Home  >  Article  >  Web Front-end  >  异常中的异常:借助系统异常处理特例实现匪夷所思的漏洞利用_html/css_WEB-ITnose

异常中的异常:借助系统异常处理特例实现匪夷所思的漏洞利用_html/css_WEB-ITnose

WBOY
WBOYOriginal
2016-06-21 08:52:101194browse

原创作者:tombkeeper

内存的读、写、执行属性是系统安全最重要的机制之一。通常,如果要改写内存中的数据,必须先确保这块内存具有可写属性,如果要执行一块内存中的代码,必须先确保这块内存具有可执行属性,否则就会引发异常。然而,Windows系统的异常处理流程中存在一些小小的特例,借助这些特例,就可以知其不可写而写,知其不可执行而执行。

0×01 直接改写只读内存

我在CanSecWest 2014的演讲《ROPs are for the 99%》中介绍了一种有趣的IE浏览器漏洞利用技术:通过修改JavaScript对象中的某些标志,从而关闭安全模式,让IE可以加载类似WScript.Shell这样的危险对象,从而执行任意代码而完全无需考虑DEP。

不过,修改SafeMode标志并非是让IE可以加载危险对象的唯一方法。

IE浏览器的某些界面实际上是用HTML实现的,这些HTML通常存储在ieframe.dll的资源中,例如:打印预览是res://ieframe.dll/preview.dlg,整理收藏夹是res://ieframe.dll/orgfav.dlg,页面属性则是 res://ieframe.dll/docppg.ppg。

IE浏览器会为这些HTML创建独立的渲染实例,以及独立的JavaScript引擎实例。而为这些HTML创建的JavaScript引擎实例中,SafeMode本身就是关闭的。

所以,只需将JavaScript代码插入到ieframe.dll的资源中,然后触发IE的相应功能,被插入的代码就会被当作IE自身的功能代码在SafeMode关闭的JavaScript实例下执行。

不过,PE的资源节是只读的,如果试图用某个能对任意地址进行写入的漏洞直接改写ieframe.dll的资源,会触发写访问违例:

在上面的异常处理链中,mshtml.dll中的异常处理函数最终会调用kernel32!RaiseFailFastException()。如果g_fFailFastHandlerDisabled标志是false,就会终止当前进程:

但是,如果g_fFailFastHandlerDisabled标志为true,异常处理链就会执行到 kernel32!UnhandledExceptionFilter() ,并最终执行kernel32!CheckForReadOnlyResourceFilter() :

如果BasepAllowResourceConversion 也为true,CheckForReadOnlyResource()函数就会将试图写入的那个内存分页的属性设为可写,然后正常返回。

也就是说,如果先将g_fFailFastHandlerDisabled和BasepAllowResourceConversion这两个标志改写为true,之后就可以直接修改ieframe.dll的资源,而不必担心其只读属性的问题,操作系统会处理好一切。

另外还有个小问题。如果像上面所说的那样触发了一次CheckForReadOnlyResource()中的修改内存属性的操作,内存属性的RegionSize也会变成一个内存分页的大小,通常是0×1000。而IE在以ieframe.dll中的HTML资源创建渲染实例前,mshtml!GetResource()函数会检查资源所在内存的RegionSize属性,如果该属性小于资源的大小,就会返回失败。然而,只需将要改写的资源从头到尾全部改写一遍, RegionSize就会相应变大,从而绕过这个检查。

这样,利用Windows写访问异常对PE文件资源节开的绿灯,就可以写出非常奇妙的漏洞利用代码。

0×02 直接执行不可执行内存

我在VARA 2009的演讲《漏洞挖掘中的时间维度》中介绍了一种较为少见的模块地址释放后重用漏洞。比如一个程序中线程A调用了模块X的函数,模块X又调用了模块Y的函数。模块Y的函数由于某种原因,耗时比较长才能返回。在它返回前,如能让线程B将模块X释放,那么模块Y的函数返回时,返回地址将是无效的。当时发现在Opera浏览器中可以利用Flash模块触发这种漏洞,一款国产下载工具也有类似问题。

另外还有不少其它类型的漏洞,最终表现也和上述问题一样,可以执行某个固定的指针,但无法控制该指针的值。在无DEP环境下,这些漏洞并不难利用,只要喷射代码到会被执行的地址即可。而在DEP环境下,这些漏洞通常都被认为是不可能利用的。

但如果在预期会被执行到的地址喷射下面这样的数据:

即使在DEP环境下,尽管堆喷射的内存区域确定无疑不可执行,但你会惊奇地发现系统似乎还是执行了这些指令,跳到ecx所设定的地址去了。只要把ecx设为合适的值,就可以跳往任何地址,继而执行ROP链。

这是因为Windows系统为了兼容某些老版本程序,实现了一套叫ATL thunk emulation的机制。系统内核在处理执行访问异常时,会检查异常地址处的代码是否符合ATL thunk特征。对符合ATL thunk特征的代码,内核会用KiEmulateAtlThunk()函数去模拟执行它们。

ATL thunk emulation机制会检查要跳往的地址是否位于PE文件中,在支持CFG的系统上还会确认要跳往的地址能否通过CFG检查。同时,在Vista之后的Windows默认 DEP policy 下,ATL thunk emulation机制仅对没有设置 IMAGE_DLLCHARACTERISTICS_NX_COMPAT的程序生效。如果程序编译时指定了/NXCOMPAT参数,就不再兼容ATL thunk emulation了。不过还是有很多程序支持ATL thunk emulation,例如很多第三方应用程序,以及32 位的 iexplore.exe。所以,类似Hacking Team泄露邮件中的CVE-2015-2425,如能用某种堆喷成功抢占内存,也可借此技巧实现漏洞利用。

这样,利用系统异常处理流程中的ATL thunk emulation能直接执行不可执行内存的特性,就可以让一些通常认为无法利用的漏洞起死回生。

(本文大部分内容完成于2014年10月,涉及的模块地址、符号信息等基于Windows Technical Preview 6.4.9841 x64 with Internet Explorer 11。)

参考:

[1] ROPs are for the 99%, CanSecWest 2014

[2]  Bypassing Browser Memory Protections

[3]  (CVE-2015-2425) “Gifts” From Hacking Team Continue, IE Zero-Day Added to Mix

[4] 《漏洞挖掘中的时间维度》,VARA 2009

*作者:tombkeeper,本文首发于 腾讯玄武实验室博客 ,转载请注明来自FreeBuf黑客与极客(FreeBuf.COM)

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn