#! /usr/bin/env python
#coding=utf-8
from __future__ import unicode_literals
from multiprocessing.dummy import Pool as ThreadPool
import threading
import os
import sys
import cPickle
from collections import namedtuple
import urllib2
from urlparse import urlsplit
import time
# global lock
lock = threading.Lock()
# default parameters
defaults = dict(thread_count=10,
buffer_size=10*1024,
block_size=1000*1024)
def progress(percent, width=50):
print "%s %d%%\r" % (('%%-%ds' % width) % (width * percent / 100 * '='), percent),
if percent >= 100:
print
sys.stdout.flush()
def write_data(filepath, data):
with open(filepath, 'wb') as output:
cPickle.dump(data, output)
def read_data(filepath):
with open(filepath, 'rb') as output:
return cPickle.load(output)
FileInfo = namedtuple('FileInfo', 'url name size lastmodified')
def get_file_info(url):
class HeadRequest(urllib2.Request):
def get_method(self):
return "HEAD"
res = urllib2.urlopen(HeadRequest(url))
res.read()
headers = dict(res.headers)
size = int(headers.get('content-length', 0))
lastmodified = headers.get('last-modified', '')
name = None
if headers.has_key('content-disposition'):
name = headers['content-disposition'].split('filename=')[1]
if name[0] == '"' or name[0] == "'":
name = name[1:-1]
else:
name = os.path.basename(urlsplit(url)[2])
return FileInfo(url, name, size, lastmodified)
def download(url, output,
thread_count = defaults['thread_count'],
buffer_size = defaults['buffer_size'],
block_size = defaults['block_size']):
# get latest file info
file_info = get_file_info(url)
# init path
if output is None:
output = file_info.name
workpath = '%s.ing' % output
infopath = '%s.inf' % output
# split file to blocks. every block is a array [start, offset, end],
# then each greenlet download filepart according to a block, and
# update the block' offset.
blocks = []
if os.path.exists(infopath):
# load blocks
_x, blocks = read_data(infopath)
if (_x.url != url or
_x.name != file_info.name or
_x.lastmodified != file_info.lastmodified):
blocks = []
if len(blocks) == 0:
# set blocks
if block_size > file_info.size:
blocks = [[0, 0, file_info.size]]
else:
block_count, remain = divmod(file_info.size, block_size)
blocks = [[i*block_size, i*block_size, (i+1)*block_size-1] for i in range(block_count)]
blocks[-1][-1] += remain
# create new blank workpath
with open(workpath, 'wb') as fobj:
fobj.write('')
print 'Downloading %s' % url
# start monitor
threading.Thread(target=_monitor, args=(infopath, file_info, blocks)).start()
# start downloading
with open(workpath, 'rb+') as fobj:
args = [(url, blocks[i], fobj, buffer_size) for i in range(len(blocks)) if blocks[i][1]
if thread_count > len(args):
thread_count = len(args)
pool = ThreadPool(thread_count)
pool.map(_worker, args)
pool.close()
pool.join()
# rename workpath to output
if os.path.exists(output):
os.remove(output)
os.rename(workpath, output)
# delete infopath
if os.path.exists(infopath):
os.remove(infopath)
assert all([block[1]>=block[2] for block in blocks]) is True
def _worker((url, block, fobj, buffer_size)):
req = urllib2.Request(url)
req.headers['Range'] = 'bytes=%s-%s' % (block[1], block[2])
res = urllib2.urlopen(req)
while 1:
chunk = res.read(buffer_size)
if not chunk:
break
with lock:
fobj.seek(block[1])
fobj.write(chunk)
block[1] += len(chunk)
def _monitor(infopath, file_info, blocks):
while 1:
with lock:
percent = sum([block[1] - block[0] for block in blocks]) * 100 / file_info.size
progress(percent)
if percent >= 100:
break
write_data(infopath, (file_info, blocks))
time.sleep(2)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Download file by multi-threads.')
parser.add_argument('url', type=str, help='url of the download file')
parser.add_argument('-o', type=str, default=None, dest="output", help='output file')
parser.add_argument('-t', type=int, default=defaults['thread_count'], dest="thread_count", help='thread counts to downloading')
parser.add_argument('-b', type=int, default=defaults['buffer_size'], dest="buffer_size", help='buffer size')
parser.add_argument('-s', type=int, default=defaults['block_size'], dest="block_size", help='block size')
argv = sys.argv[1:]
if len(argv) == 0:
argv = ['https://eyes.nasa.gov/eyesproduct/EYES/os/win']
args = parser.parse_args(argv)
start_time = time.time()
download(args.url, args.output, args.thread_count, args.buffer_size, args.block_size)
print 'times: %ds' % int(time.time()-start_time)

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
