脚本1:
这两天用python写了一个删除指定目录下过期时间的脚本。也可能是我初学python,对python还不够熟习,总觉得这个脚本用shell写应该更简单也更容易些。
就功能上来说,该脚本已经实现了我想要的效果,不过该脚本还不够通用性,还有更多可以完善的地方。目前该脚本在python2.4下运行良好。同时,我在脚本中加入了对python版本的判断,理论上2.7下也应该可以正常使用。有环境的朋友可以帮忙测试一下。
该脚本不完善的地方在于,只能支持一级目录下的文件删除,还不支持目录递归。同时过期文件的定义只能按week来做。
Python代码:
#! /usr/bin/env python
# -*- coding=utf-8 -*-
import sys
import os
import time,datetime
# 定义需要删除文件的目录
dir = '/data/webbak/'
# 被删除文件写入日志文件
logdir = '/var/log'
logfile = os.path.join(logdir, 'delete.log')
# 获取当前系统python版本
ver = sys.version
ver = ver.split(' ')
ver = ver[0]
# 将"Wed Jul 4 13:25:59 2012"格式的时间转成“2012-07-02 14:50:15”格式的时间
# version是当前系统python版本号
# time是"Wed Jul 4 13:25:59 2012"格式的时间
# 函数返回"2012-07-02 14:50:15"格式的时间
def string2time(str_time, version = ver):
version_l = version.split('.')[0:2]
ver = version_l[0] + '.' + version_l[1]
if (ver == '2.7'):
f_time = datetime.datetime.strptime(str_time, time_format)
f_time = f_time.strftime('%Y-%m-%d %H:%M:%S')
return f_time
elif(ver == '2.4'):
f_time = time.strptime(str_time, time_format)
f_time = datetime.datetime(*f_time[0:6])
return f_time
# 时间格式
time_format = "%a %b %d %H:%M:%S %Y"
# 取得当前时间
today = datetime.datetime.now()
# 定义4个星期
four_weeks = datetime.timedelta(weeks=6)
# 4星期前的日期
four_weeks_ago = today - four_weeks
# 将时间转成timestamps
four_weeks_ago_timestamps = time.mktime(four_weeks_ago.timetuple())
# 列出目录中的所有文件
files = os.listdir(dir)
# 打开要删除的文件日志
fh = open(logfile, "w+")
# 遍历文件,打印出文件的创建时间
for f in files:
# 忽略掉.开头的文件
if f.startswith('.'):
continue
# 忽略掉当前目录下的目录
if os.path.isdir(os.path.join(dir,f)):
continue
# 获得文件的modify时间,并转换成timestamp格式
file_timestamp = os.path.getmtime(os.path.join(dir, f))
file_time_f = string2time(time.ctime(file_timestamp))
if float(file_timestamp) fh.write(str(today) + "\t" + str(file_time_f) + "\t" + os.path.join(dir,f) + "\n")
os.remove(os.path.join(dir,f))
# 关闭文件
fh.close()
脚本2:
实现类似下面的Shell命令的操作
Python代码:
import os
import sys
import time
class DeleteLog:
def __init__(self,fileName,days):
self.fileName = fileName
self.days = days
def delete(self):
if os.path.isfile(self.fileName):
fd = open(self.fileName,'r')
while 1:
buffer = fd.readline()
if not buffer : break
if os.path.isfile(buffer):
os.remove(buffer)
fd.close()
elif os.path.isdir(self.fileName):
for i in [os.sep.join([self.fileName,v]) for v in os.listdir(self.fileName)]:
print i
if os.path.isfile(i):
if self.compare_file_time(i):
os.remove(i)
elif os.path.isdir(i):
self.fileName = i
self.delete()
def compare_file_time(self,file):
time_of_last_access = os.path.getatime(file)
age_in_days = (time.time()-time_of_last_access)/(60*60*24)
if age_in_days > self.days:
return True
return False
if __name__ == '__main__':
if len(sys.argv) == 2:
obj = DeleteLog(sys.argv[1],0)
obj.delete()
elif len(sys.argv) == 3:
obj = DeleteLog(sys.argv[1],int(sys.argv[2]))
obj.delete()
else:
print "usage: python %s listFileName|dirName [days]" % sys.argv[0]
sys.exit(1)

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
