Python 的多线程有两种实现方法:
函数,线程类
1.函数
调用 thread 模块中的 start_new_thread() 函数来创建线程,以线程函数的形式告诉线程该做什么
# -*- coding: utf-8 -*-
import thread
def f(name):
#定义线程函数
print "this is " + name
if __name__ == '__main__':
thread.start_new_thread(f, ("thread1",))
#用start_new_thread()调用线程函数和其他参数
while 1:
pass
不过这种方法暂时没能找到其他辅助方法,连主线程等待都要用 while 1 这种方法解决。
2.线程类
调用 threading 模块,创建 threading.Thread 的子类来得到自定义线程类。
# -*- coding: utf-8 -*-
import threading
class Th(threading.Thread):
def __init__(self, name):
threading.Thread.__init__(self)
self.t_name = name
#调用父类构造函数
def run(self):
#重写run()函数,线程默认从此函数开始执行
print "This is " + self.t_name
if __name__ == '__main__':
thread1 = Th("Thread_1")
thread1.start()
#start()函数启动线程,自动执行run()函数
threading.Thread 类的可继承函数:
getName() 获得线程对象名称
setName() 设置线程对象名称
join() 等待调用的线程结束后再运行之后的命令
setDaemon(bool) 阻塞模式, True: 父线程不等待子线程结束, False 等待,默认为 False
isDaemon() 判断子线程是否和父线程一起结束,即 setDaemon() 设置的值
isAlive() 判断线程是否在运行
实例
import threading
import time
class Th(threading.Thread):
def __init__(self, thread_name):
threading.Thread.__init__(self)
self.setName(thread_name)
def run(self):
print "This is thread " + self.getName()
for i in range(5):
time.sleep(1)
print str(i)
print self.getName() + "is over"
join() 阻塞等待
if __name__ == '__main__':
thread1 = Th("T1 ")
thread1.start()
#thread1.join()
print "main thread is over"
不带 thread1.join() ,得到如下结果:
This is thread T1
main thread is over
0
1
2
T1 is over
不等待 thread1 完成,执行之后语句。
加了 thread1.join() ,得到如下结果:
This is thread T1
0
1
2
T1 is over
main thread is over
阻塞等待 thread1 结束,才执行下面语句
主线程等待
if __name__ == '__main__':
thread1 = Th("T1 ")
thread1.setDaemon(True)
#要在线程执行之前就设置这个量
thread1.start()
print "main thread is over"
报错: Exception in thread T1 (most likely raised during interpreter shutdown):
也就是主线程不等待子线程就结束了。
多个子线程
if __name__ == '__main__':
for i in range(3):
t = Th(str(i))
t.start()
print "main thread is over"
这里的 t 可同时处理多个线程,即 t 为线程句柄,重新赋值不影响线程。
这里奇怪的是,运行 t.run() 时,不会再执行其他线程。虽不明,还是用 start() 吧。暂且理解为 start() 是非阻塞并行的,而 run 是阻塞的。
线程锁
threading 提供线程锁,可以实现线程同步。
import threading
import time
class Th(threading.Thread):
def __init__(self, thread_name):
threading.Thread.__init__(self)
self.setName(thread_name)
def run(self):
threadLock.acquire()
#获得锁之后再运行
print "This is thread " + self.getName()
for i in range(3):
time.sleep(1)
print str(i)
print self.getName() + " is over"
threadLock.release()
#释放锁
if __name__ == '__main__':
threadLock = threading.Lock()
#设置全局锁
thread1 = Th('Thread_1')
thread2 = Th('Thread_2')
thread1.start()
thread2.start()
得到结果:
This is thread Thread_1
0
1
2
Thread_1 is over
This is thread Thread_2
0
1
2
Thread_2 is over

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

ThefastestmethodforlistconcatenationinPythondependsonlistsize:1)Forsmalllists,the operatorisefficient.2)Forlargerlists,list.extend()orlistcomprehensionisfaster,withextend()beingmorememory-efficientbymodifyinglistsin-place.

ToinsertelementsintoaPythonlist,useappend()toaddtotheend,insert()foraspecificposition,andextend()formultipleelements.1)Useappend()foraddingsingleitemstotheend.2)Useinsert()toaddataspecificindex,thoughit'sslowerforlargelists.3)Useextend()toaddmultiple

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 English version
Recommended: Win version, supports code prompts!

Atom editor mac version download
The most popular open source editor
