今日总结:
关联模型
ONE_TO_ONE : HAS_ONE&BELONGS_TO
ONE_TO_MANY : HAS_MANY&BELONGS_TO
MANY_TO_MANY
首先在模型端定义 表名为首的模型类 集成 关联模型类
在类中 定义 保护变量 $_link = array();里面是字段的映射方式;
如:user表映射为 archive 为 hasone 映射方式、、或者说一对一也可以用belongsto
dept为 belongsto映射方式
grp为manytomany映射方式
默认的manytomany方式中间表名应定义为 操作表明_目标表名
也可以设置relation_table的值进行初始化
hasone 实例化对象 设置 relation()参数为真值 并调用 对象关系映射的方法进行增删改查
关联模型对象 增删改查后 关联的唯一相应字段都会发生改变
自动填充~完成无限级分类
在活动段实例化对象 调用field方法 参数包含concat方法参数内包含path 连接符 - id as bpath 并调用连贯操作的order方法参数为bpath,对象关系映射的select方法。foreache遍历以上获取的多条数据并给每一条加入一个新字段count赋值为count方法 参数为 explode方法 参数为 连接符- bpath字段,从而让每条记录增加一个 和自己路径长度数相等的 count字段 让后 调用¥this 下的assign方法赋值 并调用display方法进行显示。
视图端为表单提交方向为add活动 调用volist标签 使option标签的value为 {$vo['id']} 在volist标签内使用php标签 进行for循环并输出空格 在php标签外在输出 name值
在自定义模型端 设置自动完成的值为array 设置 path字段为回调函数 tclm填充栏目 , 定义函数 tclm 设置pid为传过来的pid 如果没有的话就赋值为0,如果是0 就 返回0,查询id为pid的条目设置 返回数据为 父条的path连接 - 连接 父条的id 即可

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

如何让MySQL外键和主键自动关联起来?在MySQL数据库中,外键和主键是非常重要的概念,它们能够帮助我们在不同表之间建立关联关系,保证数据的完整性和一致性。在实际的应用过程中,经常需要让外键自动关联到对应的主键上,以避免数据不一致的情况发生。下面将介绍如何通过具体的代码示例实现这一功能。首先,我们需要创建两个表,一个表作为主表,另一个表作为从表。在主表中创

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

“C”编译器根据优先级和关联性规则对表达式进行求值。如果表达式包含不同优先级运算符,则会考虑优先级规则。这里,首先评估10*2,因为'*'比'-'和'='具有更高的优先级如果表达式包含相同的优先级,则考虑关联性规则,即从左到右(或从右到左)。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version
SublimeText3 Linux latest version

Notepad++7.3.1
Easy-to-use and free code editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools
