Managing Hadoop logs on Debian, you can follow these steps and best practices:
Log Aggregation
- Enable log aggregation : Set yarn.log-aggregation-enable to true in the yarn-site.xml file to enable log aggregation function.
- Configure log retention policy : Set yarn.log-aggregation.retain-seconds to define the retention time of the log, such as 172800 seconds (2 days).
- Specify log storage path : Specify the storage path and suffix of the application log on HDFS through yarn.nodemanager.remote-app-log-dir and yarn.nodemanager.remote-app-log-dir-suffix.
Log viewing and analysis
- Use the journalctl command : view the detailed information of the system log. journalctl provides richer log viewing functions than traditional syslog.
- Log analysis tool : Use ELK (Elasticsearch, Logstash, Kibana) stack or Apache Solr to analyze and visualize log data in real time.
Log storage and compression
- Storage media : Use HDFS to store large amounts of raw log data, suitable for large-scale log storage.
- Log compression : Use compression algorithms such as gzip or snappy to reduce storage space and transmission time.
Log Lifecycle Management
- Define lifecycle policies : Automate the retention, archiving, and deletion times of logs to optimize storage and meet compliance requirements.
Monitoring and Alarm
- Real-time monitoring : Use tools such as Ambari or Ganglia to monitor cluster status in real time.
- Set alarm : configure the alarm mechanism to alert abnormal events in real time.
Through the above methods, effective log management can be implemented in the Debian Hadoop environment, helping the operation and maintenance team to better understand the cluster state and discover and solve problems in a timely manner.
The above is the detailed content of How to do Debian Hadoop log management. For more information, please follow other related articles on the PHP Chinese website!

The five core elements of Linux are: 1. Kernel, 2. Command line interface, 3. File system, 4. Package management, 5. Community and open source. Together, these elements define the nature and functionality of Linux.

Linux user management and security can be achieved through the following steps: 1. Create users and groups, using commands such as sudouseradd-m-gdevelopers-s/bin/bashjohn. 2. Bulkly create users and set password policies, using the for loop and chpasswd commands. 3. Check and fix common errors, home directory and shell settings. 4. Implement best practices such as strong cryptographic policies, regular audits and the principle of minimum authority. 5. Optimize performance, use sudo and adjust PAM module configuration. Through these methods, users can be effectively managed and system security can be improved.

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.

The core components of the Linux system include the kernel, file system, and user space. 1. The kernel manages hardware resources and provides basic services. 2. The file system is responsible for data storage and organization. 3. Run user programs and services in the user space.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

Dreamweaver Mac version
Visual web development tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
