Home >Technology peripherals >AI >Getting Started with Phi-2
This blog post delves into Microsoft's Phi-2 language model, comparing its performance to other models and detailing its training process. We'll also cover how to access and fine-tune Phi-2 using the Transformers library and a Hugging Face role-playing dataset.
Phi-2, a 2.7 billion-parameter model from Microsoft's "Phi" series, aims for state-of-the-art performance despite its relatively small size. It employs a Transformer architecture, trained on 1.4 trillion tokens from synthetic and web datasets focusing on NLP and coding. Unlike many larger models, Phi-2 is a base model without instruction fine-tuning or RLHF.
Two key aspects drove Phi-2's development:
For insights into building similar LLMs, consider the Master LLM Concepts course.
Phi-2 surpasses 7B-13B parameter models like Llama-2 and Mistral across various benchmarks (common sense reasoning, language understanding, math, coding). Remarkably, it outperforms the significantly larger Llama-2-70B on multi-step reasoning tasks.
Image Source
This focus on smaller, easily fine-tuned models allows for deployment on mobile devices, achieving performance comparable to much larger models. Phi-2 even outperforms Google Gemini Nano 2 on Big Bench Hard, BoolQ, and MBPP benchmarks.
Image Source
Explore Phi-2's capabilities via the Hugging Face Spaces demo: Phi 2 Streaming on GPU. This demo offers basic prompt-response functionality.
New to AI? The AI Fundamentals skill track is a great starting point.
Let's use the transformers
pipeline for inference (ensure you have the latest transformers
and accelerate
installed).
!pip install -q -U transformers !pip install -q -U accelerate from transformers import pipeline model_name = "microsoft/phi-2" pipe = pipeline( "text-generation", model=model_name, device_map="auto", trust_remote_code=True, )
Generate text using a prompt, adjusting parameters like max_new_tokens
and temperature
. Markdown output is converted to HTML.
from IPython.display import Markdown prompt = "Please create a Python application that can change wallpapers automatically." outputs = pipe( prompt, max_new_tokens=300, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, ) Markdown(outputs[0]["generated_text"])
Phi-2's output is impressive, generating code with explanations.
Phi-2's compact size allows for use on laptops and mobile devices for Q&A, code generation, and basic conversations.
This section demonstrates fine-tuning Phi-2 on the hieunguyenminh/roleplay
dataset using PEFT.
!pip install -q -U transformers !pip install -q -U accelerate from transformers import pipeline model_name = "microsoft/phi-2" pipe = pipeline( "text-generation", model=model_name, device_map="auto", trust_remote_code=True, )
Import necessary libraries:
from IPython.display import Markdown prompt = "Please create a Python application that can change wallpapers automatically." outputs = pipe( prompt, max_new_tokens=300, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, ) Markdown(outputs[0]["generated_text"])
Define variables for the base model, dataset, and fine-tuned model name:
%%capture %pip install -U bitsandbytes %pip install -U transformers %pip install -U peft %pip install -U accelerate %pip install -U datasets %pip install -U trl
Login using your Hugging Face API token. (Replace with your actual token retrieval method).
from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, pipeline, logging, ) from peft import ( LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model, ) import os, torch from datasets import load_dataset from trl import SFTTrainer
Load a subset of the dataset for faster training:
base_model = "microsoft/phi-2" dataset_name = "hieunguyenminh/roleplay" new_model = "phi-2-role-play"
Load the 4-bit quantized model for memory efficiency:
# ... (Method to securely retrieve Hugging Face API token) ... !huggingface-cli login --token $secret_hf
Add LoRA layers for efficient fine-tuning:
dataset = load_dataset(dataset_name, split="train[0:1000]")
Set up training arguments and the SFTTrainer:
bnb_config = BitsAndBytesConfig( load_in_4bit= True, bnb_4bit_quant_type= "nf4", bnb_4bit_compute_dtype= torch.bfloat16, bnb_4bit_use_double_quant= False, ) model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb_config, device_map="auto", trust_remote_code=True, ) model.config.use_cache = False model.config.pretraining_tp = 1 tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token
Save and upload the fine-tuned model:
model = prepare_model_for_kbit_training(model) peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=[ 'q_proj', 'k_proj', 'v_proj', 'dense', 'fc1', 'fc2', ] ) model = get_peft_model(model, peft_config)
Image Source
Evaluate the fine-tuned model:
training_arguments = TrainingArguments( output_dir="./results", # Replace with your desired output directory num_train_epochs=1, per_device_train_batch_size=2, gradient_accumulation_steps=1, optim="paged_adamw_32bit", save_strategy="epoch", logging_steps=100, logging_strategy="steps", learning_rate=2e-4, fp16=False, bf16=False, group_by_length=True, disable_tqdm=False, report_to="none", ) trainer = SFTTrainer( model=model, train_dataset=dataset, peft_config=peft_config, max_seq_length= 2048, dataset_text_field="text", tokenizer=tokenizer, args=training_arguments, packing= False, ) trainer.train()
This tutorial provided a comprehensive overview of Microsoft's Phi-2, its performance, training, and fine-tuning. The ability to fine-tune this smaller model efficiently opens up possibilities for customized applications and deployments. Further exploration into building LLM applications using frameworks like LangChain is recommended.
The above is the detailed content of Getting Started with Phi-2. For more information, please follow other related articles on the PHP Chinese website!