Home >Backend Development >Python Tutorial >How to Work With JSON Data Using Python
This guide demonstrates the simplicity of handling JSON data using Python.
Before diving in, let's briefly define JSON. Quoting the official JSON website:
JSON (JavaScript Object Notation) is a lightweight data-interchange format. It's human-readable and easily parsed by machines. Based on a JavaScript subset (ECMA-262 3rd Edition), it's language-independent but uses familiar conventions for C-family programmers (C, C , C#, Java, JavaScript, Perl, Python, etc.). This makes JSON ideal for data exchange.
Essentially, JSON provides a straightforward method for structuring and storing data within JavaScript, though knowledge of JavaScript isn't required to utilize JSON's syntax.
JSON facilitates efficient data storage and exchange in numerous web applications, thanks to its human-readable format, making it particularly useful for data transmission and API interactions.
Here's a JSON data example:
<code>{ "name": "Frank", "age": 39, "isEmployed": true }</code>
This tutorial covers Python's JSON processing capabilities. Let's begin!
Python simplifies JSON file handling using the json
module. The sort_keys
parameter (set to True
) sorts dictionary keys in the output.
import json myDictionary = {'tobby': 70, 'adam': 80, 'monty': 20, 'andrew': 75, 'sally': 99} pythonToJSON = json.dumps(myDictionary, sort_keys=True) # Output: {"adam": 80, "andrew": 75, "monty": 20, "sally": 99, "tobby": 70} print(pythonToJSON)
Python dictionaries allow diverse key data types (strings, integers, tuples), while JSON keys are strictly strings. Converting a Python dictionary to JSON casts all keys to strings. Reversing this process doesn't restore the original key types.
import json squares = {1: 1, 2: 4, 3: 9, 4: 16, 5: 25, False: None} pythonToJSON = json.dumps(squares) jsonToPython = json.loads(pythonToJSON) # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25, False: None} print(squares) # Output: {"1": 1, "2": 4, "3": 9, "4": 16, "5": 25, "false": null} print(pythonToJSON) # Output: {'1': 1, '2': 4, '3': 9, '4': 16, '5': 25, 'false': None} print(jsonToPython)
JSON supports limited Python object types: lists, dictionaries, booleans, numbers, strings, and None
. Other types require conversion before JSON storage.
Consider this class:
class Employee: def __init__(self, name): self.name = name
Creating an object: abder = Employee('Abder')
Directly converting this to JSON (json.dumps(abder)
) results in a TypeError
. The solution involves a custom encoding function:
def jsonDefault(object): return object.__dict__ jsonAbder = json.dumps(abder, default=jsonDefault) # Output: {"name": "Abder"} print(jsonAbder)
This successfully encodes the Python object into JSON.
This tutorial highlights Python's versatility and adaptability in handling diverse application challenges, as demonstrated by its JSON processing capabilities. Refer to the official json
module documentation for further details.
This guide incorporates contributions from Monty Shokeen, a full-stack developer and tutorial writer.
The above is the detailed content of How to Work With JSON Data Using Python. For more information, please follow other related articles on the PHP Chinese website!