Fine-tuning large language models (LLMs) like BERT, Llama, BART, and those from Mistral AI and others can be computationally intensive. Lacking a local GPU, Google Colab provides a free alternative, but its transient nature presents challenges in preserving your progress. This guide demonstrates how to leverage Google Drive to overcome this limitation, enabling you to save and resume your LLM training across multiple Colab sessions.
The solution involves using Google Drive to store intermediate results and model checkpoints. This ensures your work persists even after the Colab environment is reset. You'll need a Google account with sufficient Drive space. Create two folders in your Drive: "data" (for your training dataset) and "checkpoints" (to store model checkpoints).
Mounting Google Drive in Colab:
Begin by mounting your Google Drive within your Colab notebook using this command:
from google.colab import drive drive.mount('/content/drive')
Verify access by listing the contents of your data and checkpoints directories:
!ls /content/drive/MyDrive/data !ls /content/drive/MyDrive/checkpoints
If authorization is required, a pop-up window will appear. Ensure you grant the necessary access permissions. If the commands fail, re-run the mounting cell and check your permissions.
Saving and Loading Checkpoints:
The core of the solution lies in creating functions to save and load model checkpoints. These functions will serialize your model's state, optimizer, scheduler, and other relevant information to your "checkpoints" folder.
Save Checkpoint Function:
import torch import os def save_checkpoint(epoch, model, optimizer, scheduler, loss, model_name, overwrite=True): checkpoint = { 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'loss': loss } direc = get_checkpoint_dir(model_name) #Assumed function to construct directory path if overwrite: file_path = os.path.join(direc, 'checkpoint.pth') else: file_path = os.path.join(direc, f'epoch_{epoch}_checkpoint.pth') os.makedirs(direc, exist_ok=True) # Create directory if it doesn't exist torch.save(checkpoint, file_path) print(f"Checkpoint saved at epoch {epoch}") #Example get_checkpoint_dir function (adapt to your needs) def get_checkpoint_dir(model_name): return os.path.join("/content/drive/MyDrive/checkpoints", model_name)
Load Checkpoint Function:
import torch import os def load_checkpoint(model_name, model, optimizer, scheduler): direc = get_checkpoint_dir(model_name) if os.path.exists(direc): #Find checkpoint with highest epoch (adapt to your naming convention) checkpoints = [f for f in os.listdir(direc) if f.endswith('.pth')] if checkpoints: latest_checkpoint = max(checkpoints, key=lambda x: int(x.split('_')[-2]) if '_' in x else 0) file_path = os.path.join(direc, latest_checkpoint) checkpoint = torch.load(file_path, map_location=torch.device('cpu')) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) scheduler.load_state_dict(checkpoint['scheduler_state_dict']) epoch = checkpoint['epoch'] loss = checkpoint['loss'] print(f"Checkpoint loaded from epoch {epoch}") return epoch, loss else: print("No checkpoints found in directory.") return 0, None else: print(f"No checkpoint directory found for {model_name}, starting from epoch 1.") return 0, None
Integrating into your Training Loop:
Integrate these functions into your training loop. The loop should check for existing checkpoints before starting training. If a checkpoint is found, it resumes training from the saved epoch.
EPOCHS = 10 for exp in experiments: # Assuming 'experiments' is a list of your experiment configurations model, optimizer, scheduler = initialise_model_components(exp) # Your model initialization function train_loader, val_loader = generate_data_loaders(exp) # Your data loader function start_epoch, prev_loss = load_checkpoint(exp, model, optimizer, scheduler) for epoch in range(start_epoch, EPOCHS): print(f'Epoch {epoch + 1}/{EPOCHS}') # YOUR TRAINING CODE HERE... (training loop) save_checkpoint(epoch + 1, model, optimizer, scheduler, train_loss, exp) #Save after each epoch
This structure allows for seamless resumption of training even if the Colab session terminates. Remember to adapt the get_checkpoint_dir
function and checkpoint file naming conventions to match your specific needs. This improved example handles potential errors more gracefully and provides a more robust solution. Remember to replace placeholder functions (initialise_model_components
, generate_data_loaders
) with your actual implementations.
The above is the detailed content of Training Language Models on Google Colab. For more information, please follow other related articles on the PHP Chinese website!

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version
Chinese version, very easy to use

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
