Home >Backend Development >PHP Tutorial >Laravel Performance Tuning: Optimizing Database Queries for Scalability
In the Laravel project, as the traffic increases, it is not uncommon for database to query speed. Recently, when I optimized the back end of a real estate platform, I encountered this problem and learned some lessons from it.
Database optimization is one of the key areas of developmentable and high -performance applications. It can improve the data retrieval speed, shorten the response time and page loading time, and reduce the server load, and minimize the cost.
The challenge of the real estate platform
This is exactly what our platform encountered. The SENTRY alert has a slow database query in the production environment, which gives us a warning. The monitoring shows that the search results query takes more than 5 seconds to complete -this is far from the fast experience we promise!
Common query defects (how to avoid)
The following is its typical expression:
<code>// 优化前 $properties = Property::all(); foreach ($properties as $property) { echo $property->agent->name; // 每个房产都会触发一个新的查询 } // 优化后 // 使用 `with()` 进行预加载 $properties = Property::with(['agent'])->get(); foreach ($properties as $property) { echo $property->agent->name; // 不需要额外的查询! }</code>2. The art of database index
Understand different types of indexes
<code>// 基本的单列索引 Schema::table('properties', function (Blueprint $table) { $table->index('price'); }); // 多列的组合索引 Schema::table('properties', function (Blueprint $table) { $table->index(['city', 'price']); // 顺序很重要! }); // 唯一索引 Schema::table('properties', function (Blueprint $table) { $table->unique('property_code'); });</code>The best practice of index strategy
<code> // 良好:匹配查询模式 $properties = Property::where('city', 'New York') ->whereBetween('price', [200000, 500000]) ->get(); // 索引应匹配此模式 $table->index(['city', 'price']); // 首先是城市,然后是价格</code>
The columns often used in the where clause and the order by statement
3. Choose the content you need, not all the content
<code> -- 检查索引使用情况的 MySQL 查询 SELECT table_name, index_name, index_type, stat_name, stat_value FROM mysql.index_statistics WHERE table_name = 'properties';</code>
<code>// 优化前 $properties = Property::all(); foreach ($properties as $property) { echo $property->agent->name; // 每个房产都会触发一个新的查询 } // 优化后 // 使用 `with()` 进行预加载 $properties = Property::with(['agent'])->get(); foreach ($properties as $property) { echo $property->agent->name; // 不需要额外的查询! }</code>
When processing large datasets, handle all content in a single operation that may overwhelm the resources of the system and cause bottlenecks. Instead, you can use Laravel's Chunk method to manage the recordable batch processing records:
<code>// 基本的单列索引 Schema::table('properties', function (Blueprint $table) { $table->index('price'); }); // 多列的组合索引 Schema::table('properties', function (Blueprint $table) { $table->index(['city', 'price']); // 顺序很重要! }); // 唯一索引 Schema::table('properties', function (Blueprint $table) { $table->unique('property_code'); });</code>
Caches is like a good assistant who can remember everything. However, like any assistant, it needs clear instructions.
<code> // 良好:匹配查询模式 $properties = Property::where('city', 'New York') ->whereBetween('price', [200000, 500000]) ->get(); // 索引应匹配此模式 $table->index(['city', 'price']); // 首先是城市,然后是价格</code>
Professional Tips: Do not cache everything! Focus on:
. Sometimes, a simple pre -load statement is more helpful than spending a few hours to perform complex optimization strategies. What are you encountered in the Laravel project and which problems have you encountered in the Laravel project? Let's discuss in the comments!
The above is the detailed content of Laravel Performance Tuning: Optimizing Database Queries for Scalability. For more information, please follow other related articles on the PHP Chinese website!