search
HomeWeb Front-endJS TutorialBuilding a RAG (Retrieval-Augmented Generation) Application Using Deep Seek Rrom Scratch

Building a RAG (Retrieval-Augmented Generation) Application Using Deep Seek Rrom Scratch

Retrieval-Augmented Generation (RAG) combines retrieval systems with generative models to provide more accurate, context-rich answers. Deep Seek R1 is a powerful tool that helps us build such systems efficiently by integrating retrieval capabilities with advanced language models. In this blog, we’ll walk through the process of creating a RAG application from scratch using Deep Seek R1.


1. Understanding the Architecture of RAG

RAG applications are built around three primary components:

  1. Retriever: Finds relevant documents from a knowledge base.
  2. Generator: Uses retrieved documents as context to generate answers.
  3. Knowledge Base: Stores all the documents or information in an easily retrievable format.

2. Setting Up the Environment

Step 1: Install Required Dependencies

To get started, ensure you have Python installed. Then, set up the required libraries, including Deep Seek R1. Install the dependencies using the following commands:

pip install deep-seek-r1 langchain transformers sentence-transformers faiss-cpu

Step 2: Initialize the Project

Create a new project directory and set up a virtual environment for isolation.

mkdir rag-deepseek-app
cd rag-deepseek-app
python -m venv venv
source venv/bin/activate  # or venv\Scripts\activate for Windows

3. Building the Knowledge Base

The knowledge base is the heart of a RAG system. For this example, we’ll use text documents, but you can extend it to PDFs, databases, or other formats.

Step 1: Prepare the Data

Organize your documents in a folder named data.

rag-deepseek-app/
└── data/
    ├── doc1.txt
    ├── doc2.txt
    └── doc3.txt

Step 2: Embed the Documents

Use Deep Seek R1 to embed the documents for efficient retrieval.

from deep_seek_r1 import DeepSeekRetriever
from sentence_transformers import SentenceTransformer
import os

# Load the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Prepare data
data_dir = './data'
documents = []
for file_name in os.listdir(data_dir):
    with open(os.path.join(data_dir, file_name), 'r') as file:
        documents.append(file.read())

# Embed the documents
embeddings = embedding_model.encode(documents, convert_to_tensor=True)

# Initialize the retriever
retriever = DeepSeekRetriever()
retriever.add_documents(documents, embeddings)
retriever.save('knowledge_base.ds')  # Save the retriever state

4. Building the Retrieval and Generation Pipeline

Now, we’ll set up the pipeline to retrieve relevant documents and generate responses.

Step 1: Load the Retriever

retriever = DeepSeekRetriever.load('knowledge_base.ds')

Step 2: Integrate the Generator

We’ll use OpenAI’s GPT-based models or Hugging Face Transformers for generation.

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the generator model
generator_model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")

def generate_response(query, retrieved_docs):
    # Combine the query and retrieved documents
    input_text = query + "\n\n" + "\n".join(retrieved_docs)

    # Tokenize and generate a response
    inputs = tokenizer.encode(input_text, return_tensors='pt', max_length=512, truncation=True)
    outputs = generator_model.generate(inputs, max_length=150, num_return_sequences=1)

    return tokenizer.decode(outputs[0], skip_special_tokens=True)

5. Querying the System

Here’s how we put everything together to handle user queries.

def rag_query(query):
    # Retrieve relevant documents
    retrieved_docs = retriever.search(query, top_k=3)

    # Generate a response
    response = generate_response(query, retrieved_docs)

    return response

Example Query

query = "What is the impact of climate change on agriculture?"
response = rag_query(query)
print(response)

6. Deploying the Application

To make the RAG system accessible, you can deploy it using Flask or FastAPI.

Step 1: Set Up Flask

Install Flask:

pip install deep-seek-r1 langchain transformers sentence-transformers faiss-cpu

Create a app.py file:

mkdir rag-deepseek-app
cd rag-deepseek-app
python -m venv venv
source venv/bin/activate  # or venv\Scripts\activate for Windows

Run the server:

rag-deepseek-app/
└── data/
    ├── doc1.txt
    ├── doc2.txt
    └── doc3.txt

Step 2: Test the API

Use Postman or curl to send a query:

from deep_seek_r1 import DeepSeekRetriever
from sentence_transformers import SentenceTransformer
import os

# Load the embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

# Prepare data
data_dir = './data'
documents = []
for file_name in os.listdir(data_dir):
    with open(os.path.join(data_dir, file_name), 'r') as file:
        documents.append(file.read())

# Embed the documents
embeddings = embedding_model.encode(documents, convert_to_tensor=True)

# Initialize the retriever
retriever = DeepSeekRetriever()
retriever.add_documents(documents, embeddings)
retriever.save('knowledge_base.ds')  # Save the retriever state

The above is the detailed content of Building a RAG (Retrieval-Augmented Generation) Application Using Deep Seek Rrom Scratch. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
JavaScript's Core: Is It Built on C or C  ?JavaScript's Core: Is It Built on C or C ?May 05, 2025 am 12:07 AM

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript Applications: From Front-End to Back-EndJavaScript Applications: From Front-End to Back-EndMay 04, 2025 am 12:12 AM

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

Node.js Streams with TypeScriptNode.js Streams with TypeScriptApr 30, 2025 am 08:22 AM

Node.js excels at efficient I/O, largely thanks to streams. Streams process data incrementally, avoiding memory overload—ideal for large files, network tasks, and real-time applications. Combining streams with TypeScript's type safety creates a powe

Python vs. JavaScript: Performance and Efficiency ConsiderationsPython vs. JavaScript: Performance and Efficiency ConsiderationsApr 30, 2025 am 12:08 AM

The differences in performance and efficiency between Python and JavaScript are mainly reflected in: 1) As an interpreted language, Python runs slowly but has high development efficiency and is suitable for rapid prototype development; 2) JavaScript is limited to single thread in the browser, but multi-threading and asynchronous I/O can be used to improve performance in Node.js, and both have advantages in actual projects.

The Origins of JavaScript: Exploring Its Implementation LanguageThe Origins of JavaScript: Exploring Its Implementation LanguageApr 29, 2025 am 12:51 AM

JavaScript originated in 1995 and was created by Brandon Ike, and realized the language into C. 1.C language provides high performance and system-level programming capabilities for JavaScript. 2. JavaScript's memory management and performance optimization rely on C language. 3. The cross-platform feature of C language helps JavaScript run efficiently on different operating systems.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment