search
HomeBackend DevelopmentPython TutorialUnderstanding Python Decorators: A Beginner's Guide with Examples

Understanding Python Decorators: A Beginner’s Guide with Examples

Python Decorators: Beginner’s Guide and Examples

Python decorators are powerful and versatile tools for modifying the behavior of functions or methods. They allow you to add functionality to existing code without changing its structure. This article takes an in-depth look at decorators and provides simple examples to help you understand and use them effectively.


What is a decorator?

A decorator in Python is essentially a function that receives another function as an argument and extends or changes its behavior. Decorators are typically used to add functionality such as logging, access control, memoization, or validation to an existing function or method.

Decorators in Python are applied on function definitions using the @decorator_name syntax.


Structure of decorator

A basic decorator function has the following structure:

def decorator_function(original_function):
    def wrapper_function(*args, **kwargs):
        # 在原始函数执行之前的代码
        result = original_function(*args, **kwargs)
        # 在原始函数执行之后的代码
        return result
    return wrapper_function

Apply Decorator

You can apply decorators to functions using the @decorator_name syntax or manually:

@decorator_function
def some_function():
    print("这是原始函数。")

# 等同于:
# some_function = decorator_function(some_function)

Example 1: Basic Decorator

Let's create a simple decorator that prints a message before and after the function runs.

def simple_decorator(func):
    def wrapper():
        print("函数调用之前。")
        func()
        print("函数调用之后。")
    return wrapper

@simple_decorator
def say_hello():
    print("Hello, World!")

say_hello()

Output:

<code>函数调用之前。
Hello, World!
函数调用之后。</code>

Example 2: Decorator with parameters

You can create a decorator that accepts a parameter by wrapping it in another function.

def repeat_decorator(times):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for _ in range(times):
                func(*args, **kwargs)
        return wrapper
    return decorator

@repeat_decorator(3)
def greet(name):
    print(f"Hello, {name}!")

greet("Alice")

Output:

<code>Hello, Alice!
Hello, Alice!
Hello, Alice!</code>

Practical application of decorators

Decorators are widely used in practical scenarios. Here are some simplified practical examples:

1. Record user operations

You can use decorators to record every time the user performs an action.

def log_action(func):
    def wrapper(*args, **kwargs):
        print(f"操作:正在执行 {func.__name__}。")
        return func(*args, **kwargs)
    return wrapper

@log_action
def upload_file(filename):
    print(f"正在上传 {filename}...")

upload_file("report.pdf")

Output:

<code>操作:正在执行 upload_file。
正在上传 report.pdf...</code>

2. Track execution time

Track the time it takes for a task to execute, which is useful for performance monitoring.

import time

def track_time(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        result = func(*args, **kwargs)
        end = time.time()
        print(f"{func.__name__} 执行耗时 {end - start:.2f} 秒。")
        return result
    return wrapper

@track_time
def download_file(file_size):
    time.sleep(file_size / 10)  # 模拟下载时间
    print("下载完成。")

download_file(50)

Output:

<code>下载完成。
download_file 执行耗时 5.00 秒。</code>

3. Add user greeting

Decorators can personalize greetings by adding dynamic elements.

def add_greeting(func):
    def wrapper(name):
        print("您好,欢迎!")
        func(name)
    return wrapper

@add_greeting
def show_user_profile(name):
    print(f"用户资料:{name}")

show_user_profile("Alice")

Output:

<code>您好,欢迎!
用户资料:Alice</code>

Key Points

  • Decorators are a powerful way to modify the behavior of a function or method.
  • They simplify repetitive tasks such as logging, timing, or personalization.
  • They can be easily applied using the @decorator syntax.
  • Decorators can accept parameters and be nested to enhance flexibility.

By mastering decorators, you will acquire a valuable tool for writing concise and efficient Python code. Start trying out the provided examples to get familiar with the concept!

The above is the detailed content of Understanding Python Decorators: A Beginner's Guide with Examples. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python's Hybrid Approach: Compilation and Interpretation CombinedPython's Hybrid Approach: Compilation and Interpretation CombinedMay 08, 2025 am 12:16 AM

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

Learn the Differences Between Python's 'for' and 'while' LoopsLearn the Differences Between Python's 'for' and 'while' LoopsMay 08, 2025 am 12:11 AM

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

Python concatenate lists with duplicatesPython concatenate lists with duplicatesMay 08, 2025 am 12:09 AM

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

Python List Concatenation Performance: Speed ComparisonPython List Concatenation Performance: Speed ComparisonMay 08, 2025 am 12:09 AM

ThefastestmethodforlistconcatenationinPythondependsonlistsize:1)Forsmalllists,the operatorisefficient.2)Forlargerlists,list.extend()orlistcomprehensionisfaster,withextend()beingmorememory-efficientbymodifyinglistsin-place.

How do you insert elements into a Python list?How do you insert elements into a Python list?May 08, 2025 am 12:07 AM

ToinsertelementsintoaPythonlist,useappend()toaddtotheend,insert()foraspecificposition,andextend()formultipleelements.1)Useappend()foraddingsingleitemstotheend.2)Useinsert()toaddataspecificindex,thoughit'sslowerforlargelists.3)Useextend()toaddmultiple

Are Python lists dynamic arrays or linked lists under the hood?Are Python lists dynamic arrays or linked lists under the hood?May 07, 2025 am 12:16 AM

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

How do you remove elements from a Python list?How do you remove elements from a Python list?May 07, 2025 am 12:15 AM

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

What should you check if you get a 'Permission denied' error when trying to run a script?What should you check if you get a 'Permission denied' error when trying to run a script?May 07, 2025 am 12:12 AM

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools