search
HomeBackend DevelopmentPython TutorialCreating a chatbot with contextual retrieval using Cohere command-r and Streamlit

Creating a chatbot with contextual retrieval using Cohere command-r and Streamlit

Project Overview

Chatish is an innovative Streamlit web application that demonstrates the power of contextual retrieval using large language models, specifically Cohere's Command R model. This project demonstrates how modern artificial intelligence can transform document interaction through intelligent, context-aware conversations.

Architectural Components

The application is built around four main Python modules:

  1. app.py: Main application entry point
  2. chat_manager.py: Manage chat interactions
  3. cohere_client.py: handles AI interaction
  4. file_handler.py: Process uploaded documents

Application Architecture Diagram

<code>graph TD
    A[用户界面 - Streamlit] --> B[文件上传]
    A --> C[聊天输入]
    B --> D[文件处理器]
    C --> E[聊天管理器]
    D --> F[Cohere 客户端]
    E --> F
    F --> G[AI 响应生成]
    G --> A</code>

Key implementation details

File handling strategy

The FileHandler class demonstrates a flexible approach to document handling:

def process_file(self, uploaded_file):
    if uploaded_file.type == "application/pdf":
        return self.extract_text_from_pdf(uploaded_file)
    else:
        # 可扩展以支持未来的文件类型
        return uploaded_file.read().decode()

Smart reminder project

CohereClient build context-aware hints:

def build_prompt(self, user_input, context=None):
    context_str = f"{context}\n\n" if context else ""
    return (
        f"{context_str}"
        f"问题:{user_input}\n"
        f"除非被告知要详细说明,否则请直接给出答案,并使用可用的指标和历史数据。"
    )

Conversation Management

Chat management includes smart history tracking:

def chat(self, user_input, context=None):
    # 保持对话历史记录
    self.conversation_history.append({"role": "user", "content": user_input})

    # 限制历史记录以防止上下文溢出
    if len(self.conversation_history) > 10:
        self.conversation_history = self.conversation_history[-10:]

Technical Challenges Solved

  1. Context Search: Dynamically integrate the context of uploaded documents
  2. Session persistence: Maintain session state
  3. Streaming response: Real-time AI response generation

Technology stack

  • Web Framework: Streamlit
  • AI Integration: Cohere Command R
  • Document processing: PyPDF2
  • Language: Python 3.9

Performance Notes

  • Token Limitation: Configurable via max_tokens parameter
  • Temperature Control: Creativity through Temperature Adjustment Response
  • Model Flexibility: Easily switch models in configuration

Future Roadmap

  1. Enhanced error handling
  2. Support other file types
  3. Advanced contextual chunking
  4. Sentiment Analysis Integration

Deployment Notes

Requirements

<code>cohere==5.13.11
streamlit==1.41.1
PyPDF2==3.0.1</code>

Quick Start

# 创建虚拟环境
python3 -m venv chatish_env

# 激活环境
source chatish_env/bin/activate

# 安装依赖项
pip install -r requirements.txt

# 运行应用程序
streamlit run app.py

Safety and ethical considerations

  • API Key Protection
  • Explicit user warning about AI hallucinations
  • Transparent context management

Conclusion

Chatish represents a practical implementation of contextual AI interaction that bridges advanced language models with user-friendly document analysis.

Key Points

  • Modular, scalable architecture
  • Intelligent contextual integration
  • Simplified user experience

Explore, experiment, expand!

GitHub Repository

The above is the detailed content of Creating a chatbot with contextual retrieval using Cohere command-r and Streamlit. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python's Hybrid Approach: Compilation and Interpretation CombinedPython's Hybrid Approach: Compilation and Interpretation CombinedMay 08, 2025 am 12:16 AM

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

Learn the Differences Between Python's 'for' and 'while' LoopsLearn the Differences Between Python's 'for' and 'while' LoopsMay 08, 2025 am 12:11 AM

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

Python concatenate lists with duplicatesPython concatenate lists with duplicatesMay 08, 2025 am 12:09 AM

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

Python List Concatenation Performance: Speed ComparisonPython List Concatenation Performance: Speed ComparisonMay 08, 2025 am 12:09 AM

ThefastestmethodforlistconcatenationinPythondependsonlistsize:1)Forsmalllists,the operatorisefficient.2)Forlargerlists,list.extend()orlistcomprehensionisfaster,withextend()beingmorememory-efficientbymodifyinglistsin-place.

How do you insert elements into a Python list?How do you insert elements into a Python list?May 08, 2025 am 12:07 AM

ToinsertelementsintoaPythonlist,useappend()toaddtotheend,insert()foraspecificposition,andextend()formultipleelements.1)Useappend()foraddingsingleitemstotheend.2)Useinsert()toaddataspecificindex,thoughit'sslowerforlargelists.3)Useextend()toaddmultiple

Are Python lists dynamic arrays or linked lists under the hood?Are Python lists dynamic arrays or linked lists under the hood?May 07, 2025 am 12:16 AM

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

How do you remove elements from a Python list?How do you remove elements from a Python list?May 07, 2025 am 12:15 AM

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

What should you check if you get a 'Permission denied' error when trying to run a script?What should you check if you get a 'Permission denied' error when trying to run a script?May 07, 2025 am 12:12 AM

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment