Home >Backend Development >Python Tutorial >How to create a model from my data on Kaggle
This tutorial demonstrates how to use the FastAI library to train an image classification model to distinguish between cats and dogs. We'll go step by step, from data preparation to model training and usage.
Step 1: Data preparation
<code class="language-python">import os iskaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE', '') if iskaggle: !pip install -Uqq fastai 'duckduckgo_search>=6.2' from duckduckgo_search import DDGS from fastcore.all import * import time, json def search_images(keywords, max_images=200): return L(DDGS().images(keywords, max_results=max_images)).itemgot('image')</code>
<code class="language-python">urls = search_images('dog photos', max_images=1) from fastdownload import download_url dest = 'dog.jpg' download_url(urls[0], dest, show_progress=False) from fastai.vision.all import * im = Image.open(dest) im.to_thumb(256,256)</code>
Similarly, we download a picture of a cat:
<code class="language-python">download_url(search_images('cat photos', max_images=1)[0], 'cat.jpg', show_progress=False) Image.open('cat.jpg').to_thumb(256,256)</code>
dog_or_not/dog
and dog_or_not/cat
folders respectively. At the same time, we resize the image to improve efficiency. <code class="language-python">searches = 'dog', 'cat' path = Path('dog_or_not') for o in searches: dest = (path/o) dest.mkdir(exist_ok=True, parents=True) download_images(dest, urls=search_images(f'{o} photo')) time.sleep(5) resize_images(path/o, max_size=400, dest=path/o)</code>
<code class="language-python">failed = verify_images(get_image_files(path)) failed.map(Path.unlink)</code>
Step 2: Model training
DataBlock
to create DataLoader for loading and processing image data. <code class="language-python">dls = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=[Resize(192, method='squish')] ).dataloaders(path, bs=32) dls.show_batch(max_n=6)</code>
<code class="language-python">learn = vision_learner(dls, resnet50, metrics=error_rate) learn.fine_tune(3)</code>
Step 3: Model use
<code class="language-python">is_dog,_,probs = learn.predict(PILImage.create('dog.jpg')) print(f'This is a: {is_dog}.') print(f"Probability it's a dog: {probs[1]:.4f}")</code>
Output result:
This is a: dog. Probability it's a dog: 1.0000
This tutorial shows how to use FastAI to quickly build a simple image classification model. Remember, the accuracy of your model depends on the quality and quantity of your training data.
The above is the detailed content of How to create a model from my data on Kaggle. For more information, please follow other related articles on the PHP Chinese website!