Home >Database >Mysql Tutorial >How to Query Spark SQL DataFrames with Nested Data Structures (Maps, Arrays, Structs)?
Spark SQL supports querying complex types stored in data frames, such as maps and arrays. This guide outlines the syntax and methods for accessing and manipulating nested data structures.
<code>df.select($"arrayColumn".getItem(index)).show</code>
Where, index represents the position of the required element in the array.
<code>sqlContext.sql("SELECT arrayColumn[index] FROM df").show</code>
<code>val get_ith = udf((xs: Seq[Int], i: Int) => Try(xs(i)).toOption) df.select(get_ith($"arrayColumn", lit(index))).show</code>
Spark 2.4 introduces built-in functions such as filter, transform, aggregate, and array_* functions that can be used to operate on arrays:
<code>df.selectExpr("filter(arrayColumn, x -> x % 2 == 0) arrayColumn_even").show</code>
<code>df.selectExpr("transform(arrayColumn, x -> x + 1) arrayColumn_inc").show</code>
<code>df.selectExpr("aggregate(arrayColumn, 0, (acc, x) -> acc + x, acc -> acc) arrayColumn_sum").show</code>
<code>df.select($"mapColumn".getField("key")).show</code>
Where key represents the name of the required key in the map.
<code>sqlContext.sql("SELECT mapColumn['key'] FROM df").show</code>
<code>df.select($"mapColumn.key").show</code>
<code>val get_field = udf((kvs: Map[String, String], k: String) => kvs.get(k)) df.select(get_field($"mapColumn", lit("key"))).show</code>
<code>df.select($"structColumn.field").show</code>
Among them, field represents the name of the required field in the structure.
Fields in nested structure arrays can be accessed using a combination of dot syntax, field names, and the Column method:
<code>df.select($"nestedArrayColumn.foo").show</code>
<code>df.select($"nestedArrayColumn.vals".getItem(index).getItem(innerIndex)).show</code>
The above is the detailed content of How to Query Spark SQL DataFrames with Nested Data Structures (Maps, Arrays, Structs)?. For more information, please follow other related articles on the PHP Chinese website!