


Use Spark SQL to query complex type data frames
Introduction
Spark SQL supports querying complex types stored in data frames, such as maps and arrays. This guide outlines the syntax and methods for accessing and manipulating nested data structures.
Access array
Column.getItem method
<code>df.select($"arrayColumn".getItem(index)).show</code>
Where, index represents the position of the required element in the array.
Hive square bracket syntax
<code>sqlContext.sql("SELECT arrayColumn[index] FROM df").show</code>
User Defined Function (UDF)
<code>val get_ith = udf((xs: Seq[Int], i: Int) => Try(xs(i)).toOption) df.select(get_ith($"arrayColumn", lit(index))).show</code>
Filtering and transforming arrays
Spark 2.4 introduces built-in functions such as filter, transform, aggregate, and array_* functions that can be used to operate on arrays:
filter
<code>df.selectExpr("filter(arrayColumn, x -> x % 2 == 0) arrayColumn_even").show</code>
transform
<code>df.selectExpr("transform(arrayColumn, x -> x + 1) arrayColumn_inc").show</code>
aggregate
<code>df.selectExpr("aggregate(arrayColumn, 0, (acc, x) -> acc + x, acc -> acc) arrayColumn_sum").show</code>
Other array functions
- array_distinct
- array_max
- flatten
- arrays_zip
- array_union
- slice
Access Mapping
Column.getField method
<code>df.select($"mapColumn".getField("key")).show</code>
Where key represents the name of the required key in the map.
Hive square bracket syntax
<code>sqlContext.sql("SELECT mapColumn['key'] FROM df").show</code>
Full path point syntax
<code>df.select($"mapColumn.key").show</code>
User Defined Function (UDF)
<code>val get_field = udf((kvs: Map[String, String], k: String) => kvs.get(k)) df.select(get_field($"mapColumn", lit("key"))).show</code>
map_* functions
- map_keys
- map_values
Access structure
Full path point syntax
<code>df.select($"structColumn.field").show</code>
Among them, field represents the name of the required field in the structure.
Access nested structure array
Fields in nested structure arrays can be accessed using a combination of dot syntax, field names, and the Column method:
Dot syntax
<code>df.select($"nestedArrayColumn.foo").show</code>
DataFrame API
<code>df.select($"nestedArrayColumn.vals".getItem(index).getItem(innerIndex)).show</code>
Additional Notes
- Fields in user-defined types (UDT) can be accessed using UDFs.
- For some operations involving nested data, it may be necessary to flatten the pattern or expand the collection.
- JSON columns can be queried using the get_json_object and from_json functions.
The above is the detailed content of How to Query Spark SQL DataFrames with Nested Data Structures (Maps, Arrays, Structs)?. For more information, please follow other related articles on the PHP Chinese website!

This article addresses MySQL's "unable to open shared library" error. The issue stems from MySQL's inability to locate necessary shared libraries (.so/.dll files). Solutions involve verifying library installation via the system's package m

This article explores optimizing MySQL memory usage in Docker. It discusses monitoring techniques (Docker stats, Performance Schema, external tools) and configuration strategies. These include Docker memory limits, swapping, and cgroups, alongside

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

This article compares installing MySQL on Linux directly versus using Podman containers, with/without phpMyAdmin. It details installation steps for each method, emphasizing Podman's advantages in isolation, portability, and reproducibility, but also

This article provides a comprehensive overview of SQLite, a self-contained, serverless relational database. It details SQLite's advantages (simplicity, portability, ease of use) and disadvantages (concurrency limitations, scalability challenges). C

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

This guide demonstrates installing and managing multiple MySQL versions on macOS using Homebrew. It emphasizes using Homebrew to isolate installations, preventing conflicts. The article details installation, starting/stopping services, and best pra

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
