Select random rows from large PostgreSQL table
When working with large data sets, selecting random rows can be a computationally intensive task. This article explores various methods for retrieving random rows from a table containing approximately 500 million rows, and discusses their performance and accuracy.
Method 1: Use RANDOM() and LIMIT
The first method involves using the RANDOM() function to generate random numbers and then using the LIMIT clause to filter the results to get the required number of rows.
SELECT * FROM table WHERE RANDOM() < 0.000002 LIMIT 1000;
This approach has the advantage of being easy to implement, but may be inefficient for large tables. Because of the LIMIT clause, the database must scan all rows of the table to pick random rows and discard the rest.
Method 2: Use ORDER BY RANDOM() and LIMIT
Another approach is to first sort the rows by the RANDOM() function and then use the LIMIT clause to get random rows.
SELECT * FROM table ORDER BY RANDOM() LIMIT 1000;
This method is similar to the first method, but the sorting guarantees more efficient selection of random rows. It reduces the number of scans required, making it a better choice for large tables. However, it is still not the best choice for tables with extremely large number of rows.
Efficient approach: use numeric ID columns and indexes
For tables with numeric ID columns and fewer gaps, a more efficient approach can be used. This involves generating random numbers within a range of IDs and using them to join with the table.
WITH params AS ( SELECT 1 AS min_id, -- 最小 ID <= 当前最小 ID 5100000 AS id_span -- 四舍五入。(max_id - min_id + buffer) ) SELECT * FROM ( SELECT p.min_id + trunc(random() * p.id_span)::integer AS id FROM params p, generate_series(1, 1100) g -- 1000 + buffer GROUP BY 1 -- 去除重复项 ) r JOIN table USING (id) LIMIT 1000;
This approach leverages index access to significantly reduce the number of scans required. It is ideal for tables with a large number of rows and few gaps in the ID column.
Considerations and Recommendations
The best way to select random rows depends on specific table characteristics and performance requirements. For small tables, the RANDOM() or ORDER BY RANDOM() methods may be sufficient. However, for large tables with numeric ID columns and few gaps, it is recommended to use the above optimization method for best performance.
It should be noted that due to the nature of pseudo-random number generation in computers, none of these methods can guarantee true randomness. However, they provide a practical way to obtain a random sample of rows from a large table with reasonable efficiency and accuracy.
The above is the detailed content of How to Efficiently Select Random Rows from a Large PostgreSQL Table?. For more information, please follow other related articles on the PHP Chinese website!

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Chinese version
Chinese version, very easy to use

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft