search
HomeBackend DevelopmentC++'Tell, Don&#t Ask' Principle Explained in Seconds

The Tell, Don't Ask principle, a cornerstone of object-oriented programming (OOP), advocates for designing objects that encapsulate both their data and the methods that manipulate that data. This approach fosters more maintainable and robust systems by enhancing encapsulation.


? Understanding "Tell, Don’t Ask"

The "Tell, Don't Ask" principle emphasizes instructing objects on what to do, rather than retrieving their data and processing it externally. It promotes keeping logic and state within the object itself.

Instead of accessing an object's data to make external decisions, you directly instruct the object to perform an internal action. This strategy simplifies code, minimizes dependencies, and improves system extensibility and maintainability.


?‍?‍? Example: Sensor Value Monitoring

Let's examine a scenario involving a sensor's value and an alarm triggered when this value exceeds a threshold.

The "Ask" Approach

<code>class AskMonitor {
  private int value;
  private int limit;
  private String name;
  private Alarm alarm;

  public AskMonitor(String name, int limit, Alarm alarm) {
    this.name = name;
    this.limit = limit;
    this.alarm = alarm;
  }

  public int getValue() { return value; }
  public void setValue(int value) { this.value = value; }
  public int getLimit() { return limit; }
  public String getName() { return name; }
  public Alarm getAlarm() { return alarm; }
}</code>

Usage:

<code>AskMonitor monitor = new AskMonitor("Temperature Sensor", 100, alarm);
monitor.setValue(120);

if (monitor.getValue() > monitor.getLimit()) {
  monitor.getAlarm().warn(monitor.getName() + " is too high");
}</code>

The "Tell" Approach

With "Tell, Don't Ask," the behavior is integrated into the Monitor class.

<code>class TellMonitor {
  private int value;
  private int limit;
  private String name;
  private Alarm alarm;

  public TellMonitor(String name, int limit, Alarm alarm) {
    this.name = name;
    this.limit = limit;
    this.alarm = alarm;
  }

  public void setValue(int value) {
    this.value = value;
    if (this.value > this.limit) {
      alarm.warn(name + " is too high");
    }
  }
}</code>

Usage:

<code>TellMonitor monitor = new TellMonitor("Temperature Sensor", 100, alarm);
monitor.setValue(120);</code>

The "Tell" version eliminates external decision-making by encapsulating the logic within the setValue method.


⭐ Advantages of "Tell, Don't Ask"

Stronger Encapsulation: Data and behavior are tightly coupled.
Concise Code: External logic is minimized by internalizing behavior.
Improved Maintainability: Easier to modify and extend functionality.


? When to "Tell"

Encapsulated Behavior: When an object inherently knows how to process its data.

Example: A Monitor object, aware of its limit, should autonomously trigger an alarm upon exceeding that limit.

State-Triggered Actions: When state changes necessitate subsequent actions (e.g., notifications, logging).

Example: A UserProfile object automatically updates an activity log upon profile modifications.


? When to "Ask"

Data Retrieval: When data is needed without altering the object's state.

Example: Retrieving a User object's email address.

External Decision-Making: When decisions rely on external factors.

Example: Obtaining a Person's name to externally determine an appropriate greeting.

Responsibility Delegation: When objects collaborate, and one requires data from another for decision-making.

Example: A Router querying a Server's load for traffic management.


Interested? ? Explore other posts in my programming principles series!

  • KISS Design Principle Explained in 100 Seconds
  • DRY Principle Explained in 100 Seconds

Stay updated on future posts:

  • Linkedin
  • Github
  • Twitter/ X

The above is the detailed content of 'Tell, Don&#t Ask' Principle Explained in Seconds. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Using XML in C  : A Guide to Libraries and ToolsUsing XML in C : A Guide to Libraries and ToolsMay 09, 2025 am 12:16 AM

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

C# and C  : Exploring the Different ParadigmsC# and C : Exploring the Different ParadigmsMay 08, 2025 am 12:06 AM

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

C   XML Parsing: Techniques and Best PracticesC XML Parsing: Techniques and Best PracticesMay 07, 2025 am 12:06 AM

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C   in Specific Domains: Exploring Its StrongholdsC in Specific Domains: Exploring Its StrongholdsMay 06, 2025 am 12:08 AM

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

Debunking the Myths: Is C   Really a Dead Language?Debunking the Myths: Is C Really a Dead Language?May 05, 2025 am 12:11 AM

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

C# vs. C  : A Comparative Analysis of Programming LanguagesC# vs. C : A Comparative Analysis of Programming LanguagesMay 04, 2025 am 12:03 AM

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

Building XML Applications with C  : Practical ExamplesBuilding XML Applications with C : Practical ExamplesMay 03, 2025 am 12:16 AM

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

XML in C  : Handling Complex Data StructuresXML in C : Handling Complex Data StructuresMay 02, 2025 am 12:04 AM

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor