search
HomeBackend DevelopmentC++How can we identify and delineate holes in a 2D point set representing soil sample locations?

How can we identify and delineate holes in a 2D point set representing soil sample locations?

Finding Holes in 2D Point Sets

The task is to find the holes in a set of 2D points within a cartesian grid system. The points represent soil sample locations, and holes could include giant rocks, swampy places, or lakes/ponds. The goal is to find the concave polygon that roughly defines these areas, adjusting the sensitivity of the algorithm to control the roughness or smoothness of the polygon.

Solution Approach

Steps:

  1. Create a density map: Convert the point set to a bitmap or 2D array by scaling and projecting each point onto a grid. Calculate the density (number of points) for each cell.
  2. Identify holes: Find cells with zero density or below a given threshold.
  3. Segment hole areas: Create horizontal and vertical lines covering these holes, grouping them by proximity to form hole segments.
  4. Polygonize hole segments: Convert the segments into concave polygons. Sort the points to ensure proper connectivity and remove duplicates.

Example Implementation (C#):

using System;
using System.Collections.Generic;

public class Holes
{
    // Density map (2D array)
    private int[][] map;

    // List of hole segments (lines)
    private List<line> segments;

    // Polygonized holes (concave polygons)
    private List<polygon> holes;

    // Polygonization tolerance (higher value = smoother polygons)
    private double tolerance;

    // Initializes the hole detection algorithm.
    public Holes(int[][] points, int mapSize, double tolerance)
    {
        if (points == null || mapSize ();
        this.holes = new List<polygon>();
        
        // Create density map
        CreateDensityMap(points, mapSize);
    }

    // Identifies holes in the density map.
    public void FindHoles()
    {
        if (map == null || map.Length == 0)
        {
            throw new InvalidOperationException("Density map not initialized.");
        }
        
        // Find hole cells
        List<cell> holeCells = FindCells(0);
        
        // Group hole cells into segments
        List<list>> lineGroups = GroupLines(holeCells);
        
        // Polygonize segments
        PolygonizeSegments(lineGroups);
    }

    // Helper functions for hole detection.

    private void CreateDensityMap(int[][] points, int mapSize)
    {
        // Scale and project points onto a grid
        for (int i = 0; i  FindCells(int threshold)
    {
        List<cell> holeCells = new List<cell>();
        
        for (int i = 0; i > GroupLines(List<cell> holeCells)
    {
        // Group lines by proximity
        List<list>> lineGroups = new List<list>>();
        foreach (Cell holeCell in holeCells)
        {
            List<line> group = null;
            
            // Find existing group or create a new one
            for (int i = 0; i  line.Proximity(holeCell) ();
                lineGroups.Add(group);
            }
            
            // Add horizontal/vertical lines
            group.Add(new Line(holeCell.x, holeCell.y, true));
            group.Add(new Line(holeCell.x, holeCell.y, false));
        }
        
        return lineGroups;
    }

    private void PolygonizeSegments(List<list>> lineGroups)
    {
        foreach (List<line> lineGroup in lineGroups)
        {
            Polygon polygon = PolygonizeSegment(lineGroup);
            if (polygon != null)
            {
                holes.Add(polygon);
            }
        }
    }

    private Polygon PolygonizeSegment(List<line> lineSegment)
    {
        // Sort lines by angle (convex hull algorithm)
        lineSegment.Sort((a, b) => a.Angle.CompareTo(b.Angle));
        
        // Remove duplicate lines
        List<line> uniqueLines = new List<line>();
        foreach (Line line in lineSegment)
        {
            if (uniqueLines.Count == 0 || uniqueLines[uniqueLines.Count - 1].Angle != line.Angle)
            {
                uniqueLines.Add(line);
            }
        }
        
        // Polygonize lines
        List<point> points = new List<point>();
        for (int i = 0; i  Math.PI)
            {
                point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], true);
            }
            else
            {
                point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], false);
            }
            
            if (point != null)
            {
                points.Add(point);
            }
        }
        
        return new Polygon(points);
    }

    // Helper classes for line/polygon representation.

    private class Line
    {
        public int x1, y1, x2, y2;
        public double angle;
        public bool isHorizontal;

        public Line(int x, int y, bool isHorizontal)
        {
            if (isHorizontal)
            {
                x1 = 0; y1 = y;
                x2 = map.GetLength(0) - 1; y2 = y;
            }
            else
            {
                x1 = x; y1 = 0;
                x2 = x; y2 = map[0].GetLength(0) - 1;
            }
            
            this.angle = Math.Atan2(y2 - y1, x2 - x1);
            this.isHorizontal = isHorizontal;
        }

        public double Angle { get { return angle; } }

        public double Proximity(Cell cell)
        {
            double distX, distY;
            if (isHorizontal)
            {
                distX = cell.x - x1;
                distY = cell.y - y1;
            }
            else
            {
                distX = cell.x - x2;
                distY = cell.y - y2;
            }
            
            return Math.Sqrt(distX * distX + distY * distY);
        }

        public Point GetIntersection(Line other, bool isConvex)
        {
            double denominator, numerator, tx, ty;
            
            if (isHorizontal)
            {
                denominator = (other.y2 - other.y1) - (y2 - y1);
                numerator = ((other.x2 - other.x1) * (y1 - other.y1)) - ((x2 - x1) * (other.y2 - other.y1));
                tx = numerator / denominator;
                ty = other.y1 + ((tx - other.x1) * (other.y2 - other.y1)) / (other.x2 - other.x1);
            }
            else
            {
                denominator = (other.x2 - other.x1) - (x2 - x1);</point></point></line></line></line></line></list></line></list></list></cell></cell></cell></list></cell></polygon></polygon></line>

The above is the detailed content of How can we identify and delineate holes in a 2D point set representing soil sample locations?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does the C   Standard Template Library (STL) work?How does the C Standard Template Library (STL) work?Mar 12, 2025 pm 04:50 PM

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?Mar 12, 2025 pm 04:52 PM

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

How does dynamic dispatch work in C   and how does it affect performance?How does dynamic dispatch work in C and how does it affect performance?Mar 17, 2025 pm 01:08 PM

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

How do I use ranges in C  20 for more expressive data manipulation?How do I use ranges in C 20 for more expressive data manipulation?Mar 17, 2025 pm 12:58 PM

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

How do I handle exceptions effectively in C  ?How do I handle exceptions effectively in C ?Mar 12, 2025 pm 04:56 PM

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

How do I use move semantics in C   to improve performance?How do I use move semantics in C to improve performance?Mar 18, 2025 pm 03:27 PM

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

How do I use rvalue references effectively in C  ?How do I use rvalue references effectively in C ?Mar 18, 2025 pm 03:29 PM

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

How does C  's memory management work, including new, delete, and smart pointers?How does C 's memory management work, including new, delete, and smart pointers?Mar 17, 2025 pm 01:04 PM

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version