Home >Backend Development >C++ >Why Isn't My Prime Number Finding Program Producing Any Output, and How Can I Optimize It?
Debugging a Prime Number Program with a Large Range
A programmer is troubleshooting a program designed to identify prime numbers within a large, long variable range. The program runs without errors, but produces no output. Here's the problematic code:
<code class="language-csharp">using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication16 { class Program { void prime_num(long num) { bool isPrime = true; for (int i = 0; i < num; i++) // Outer loop starts at 0! { isPrime = true; for (int j = 2; j < i; j++) // Inefficient inner loop { if (i % j == 0) { isPrime = false; break; } } if (isPrime) { Console.WriteLine(i); } } } static void Main(string[] args) { Program p = new Program(); p.prime_num(100); // Example range } } }</code>
The core issue lies in the nested loop's logic. The outer loop starts at i = 0
, incorrectly identifying 0 as a prime. Furthermore, the inner loop's inefficiency significantly slows down the process for large ranges. It checks divisibility up to i-1
, when it only needs to check up to the square root of i
.
A more efficient approach utilizes the trial division sieve method. While a single-line solution is possible using LINQ, it's less readable. A more practical optimized solution is shown below:
<code class="language-csharp">using System; using System.Collections.Generic; public class PrimeFinder { public static List<long> FindPrimes(long limit) { List<long> primes = new List<long>(); bool[] isPrime = new bool[limit + 1]; for (long i = 2; i <= limit; i++) { isPrime[i] = true; } for (long p = 2; p * p <= limit; p++) { if (isPrime[p]) { for (long i = p * p; i <= limit; i += p) isPrime[i] = false; } } for (long i = 2; i <= limit; i++) { if (isPrime[i]) { primes.Add(i); } } return primes; } public static void Main(string[] args) { List<long> primes = FindPrimes(100); // Example range foreach(long p in primes) { Console.WriteLine(p); } } }</code>
This revised code employs a Sieve of Eratosthenes-based approach for better performance with larger ranges. It correctly identifies and outputs prime numbers within the specified limit.
The above is the detailed content of Why Isn't My Prime Number Finding Program Producing Any Output, and How Can I Optimize It?. For more information, please follow other related articles on the PHP Chinese website!