search
HomeBackend DevelopmentPython TutorialFace Recognition with Python and FaceNet

This guide demonstrates a face similarity detection tool using facenet-pytorch. Leveraging the FaceNet model's high-quality face embeddings, the tool compares a target image against multiple candidates to identify the closest match. Let's explore the implementation.

Essential Tools and Libraries

  1. PyTorch: The foundation for deep learning operations.
  2. FaceNet-PyTorch: Provides pre-trained models for face detection and embedding generation.
  3. Pillow (PIL): Handles image manipulation tasks.
  4. Matplotlib: Used for result visualization.

Two core models are employed:

  • MTCNN: Detects faces within images.
  • InceptionResnetV1: Extracts facial embeddings.

Initialization

import torch
from facenet_pytorch import MTCNN, InceptionResnetV1
from PIL import Image
import requests
from io import BytesIO
import matplotlib.pyplot as plt

# Initialize face detection (MTCNN) and embedding extraction (InceptionResnetV1) modules.
mtcnn = MTCNN(image_size=160, keep_all=True)
resnet = InceptionResnetV1(pretrained='vggface2').eval()

Function Definitions

1. Image Loading and Embedding Extraction:

This function retrieves an image from a URL, detects faces, and calculates the embedding.

def get_embedding_and_face(image_path):
    """Loads an image, detects faces, and returns the embedding and detected face."""
    try:
        response = requests.get(image_path)
        response.raise_for_status()
        content_type = response.headers.get('Content-Type')
        if 'image' not in content_type:
            raise ValueError(f"Invalid image URL: {content_type}")
        image = Image.open(BytesIO(response.content)).convert("RGB")
    except Exception as e:
        print(f"Image loading error from {image_path}: {e}")
        return None, None

    faces, probs = mtcnn(image, return_prob=True)
    if faces is None or len(faces) == 0:
        return None, None

    embedding = resnet(faces[0].unsqueeze(0))
    return embedding, faces[0]

2. Tensor to Image Conversion:

Prepares a tensor for display.

def tensor_to_image(tensor):
    """Converts a normalized tensor to a displayable image array."""
    image = tensor.permute(1, 2, 0).detach().numpy()
    image = (image - image.min()) / (image.max() - image.min())
    image = (image * 255).astype('uint8')
    return image

3. Most Similar Face Identification:

Compares the target image's embedding with those of the candidates.

def find_most_similar(target_image_path, candidate_image_paths):
    """Identifies the most similar image to the target from a list of candidates."""
    target_emb, target_face = get_embedding_and_face(target_image_path)
    if target_emb is None:
        raise ValueError("No face detected in the target image.")

    highest_similarity = float('-inf')
    most_similar_face = None
    most_similar_image_path = None

    candidate_faces = []
    similarities = []

    for candidate_image_path in candidate_image_paths:
        candidate_emb, candidate_face = get_embedding_and_face(candidate_image_path)
        if candidate_emb is None:
            similarities.append(None)
            candidate_faces.append(None)
            continue

        similarity = torch.nn.functional.cosine_similarity(target_emb, candidate_emb).item()
        similarities.append(similarity)
        candidate_faces.append(candidate_face)

        if similarity > highest_similarity:
            highest_similarity = similarity
            most_similar_face = candidate_face
            most_similar_image_path = candidate_image_path

    # Visualization
    plt.figure(figsize=(12, 8))

    # Display target image
    plt.subplot(2, len(candidate_image_paths) + 1, 1)
    plt.imshow(tensor_to_image(target_face))
    plt.title("Target Image")
    plt.axis("off")

    # Display most similar image
    if most_similar_face is not None:
        plt.subplot(2, len(candidate_image_paths) + 1, 2)
        plt.imshow(tensor_to_image(most_similar_face))
        plt.title("Most Similar")
        plt.axis("off")

    # Display all candidates with similarity scores
    for idx, (candidate_face, similarity) in enumerate(zip(candidate_faces, similarities)):
        plt.subplot(2, len(candidate_image_paths) + 1, idx + len(candidate_image_paths) + 2)
        if candidate_face is not None:
            plt.imshow(tensor_to_image(candidate_face))
            plt.title(f"Score: {similarity * 100:.2f}%")
        else:
            plt.title("No Face Detected")
        plt.axis("off")

    plt.tight_layout()
    plt.show()

    if most_similar_image_path is None:
        raise ValueError("No faces detected in candidate images.")

    return most_similar_image_path, highest_similarity

Usage

Image URLs for comparison:

image_url_target = 'https://d1mnxluw9mpf9w.cloudfront.net/media/7588/4x3/1200.jpg'
candidate_image_urls = [
    'https://beyondthesinglestory.wordpress.com/wp-content/uploads/2021/04/elon_musk_royal_society_crop1.jpg',
    'https://cdn.britannica.com/56/199056-050-CCC44482/Jeff-Bezos-2017.jpg',
    'https://cdn.britannica.com/45/188745-050-7B822E21/Richard-Branson-2003.jpg'
]

most_similar_image, similarity_score = find_most_similar(image_url_target, candidate_image_urls)
print(f"Most similar image: {most_similar_image}")
print(f"Similarity score: {similarity_score * 100:.2f}%")

Result

Face Recognition with Python and FaceNet

Conclusion

This example showcases facenet-pytorch's capabilities for facial recognition. The combination of face detection and embedding generation enables the creation of tools for various applications, such as identity verification or content filtering.

The above is the detailed content of Face Recognition with Python and FaceNet. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What are the alternatives to concatenate two lists in Python?What are the alternatives to concatenate two lists in Python?May 09, 2025 am 12:16 AM

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

Python: Efficient Ways to Merge Two ListsPython: Efficient Ways to Merge Two ListsMay 09, 2025 am 12:15 AM

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiled vs Interpreted Languages: pros and consCompiled vs Interpreted Languages: pros and consMay 09, 2025 am 12:06 AM

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

Python: For and While Loops, the most complete guidePython: For and While Loops, the most complete guideMay 09, 2025 am 12:05 AM

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

Python concatenate lists into a stringPython concatenate lists into a stringMay 09, 2025 am 12:02 AM

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Python's Hybrid Approach: Compilation and Interpretation CombinedPython's Hybrid Approach: Compilation and Interpretation CombinedMay 08, 2025 am 12:16 AM

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

Learn the Differences Between Python's 'for' and 'while' LoopsLearn the Differences Between Python's 'for' and 'while' LoopsMay 08, 2025 am 12:11 AM

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

Python concatenate lists with duplicatesPython concatenate lists with duplicatesMay 08, 2025 am 12:09 AM

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)