Weekly Challenge 303: Python and Perl Solutions
Mohammad S. Anwar's Weekly Challenge provides a regular coding exercise. My solutions, presented below, are initially crafted in Python and then adapted to Perl. This dual approach enhances coding proficiency.
Challenge 303: Solutions
Task 1: Generating Even 3-Digit Integers
Task Description:
Given a list of positive integers, generate all unique even 3-digit integers that can be formed using the digits from the list.
Python Solution:
This Python solution leverages the itertools.permutations
function to efficiently generate all possible 3-digit combinations. A set is used to maintain uniqueness.
from itertools import permutations def three_digits_even(ints: list) -> list: solution = set() for p in permutations(ints, 3): num_str = "".join(map(str, p)) num = int(num_str) if num >= 100 and num % 2 == 0 and num_str[0] != '0': solution.add(num) return sorted(list(solution))
Perl Solution:
The Perl equivalent uses the Algorithm::Permute
module for permutations and a hash to ensure uniqueness.
use Algorithm::Permute; sub three_digits_even { my @ints = @_; my %seen; my @result; my $p = Algorithm::Permute->new(\@ints, 3); while (my @perm = $p->next) { my $num_str = join('', @perm); my $num = $num_str; if ($num >= 100 and $num % 2 == 0 and $num_str !~ /^0/) { push @result, $num unless $seen{$num}++; } } return sort {$a <=> $b} @result; }
Examples:
<code># Python print(three_digits_even([2, 1, 3, 0])) # Output: [102, 120, 130, 132, 210, 230, 302, 310, 312, 320] print(three_digits_even([2, 2, 8, 8, 2])) # Output: [222, 228, 282, 288, 822, 828, 882] # Perl print "@{[three_digits_even(2, 1, 3, 0)]}\n"; # Output: 102 120 130 132 210 230 302 310 312 320 print "@{[three_digits_even(2, 2, 8, 8, 2)]}\n"; # Output: 222 228 282 288 822 828 882</code>
Task 2: Delete and Earn
Task Description:
Given an array of integers, find the maximum number of points you can earn by repeatedly deleting an element, earning its value, and then deleting all elements with values one less and one more than the deleted element.
Python Solution:
This Python solution uses a Counter
to track element frequencies and employs a recursive function to explore different deletion strategies.
from collections import Counter def delete_and_earn(ints: list) -> int: freq = Counter(ints) return max_score(freq) def max_score(freq: Counter) -> int: max_points = 0 for num in list(freq): # Iterate through a copy to safely delete points = num * freq[num] new_freq = freq.copy() del new_freq[num] if num - 1 in new_freq: del new_freq[num - 1] if num + 1 in new_freq: del new_freq[num + 1] max_points = max(max_points, points + (0 if not new_freq else max_score(new_freq))) return max_points
Perl Solution:
The Perl solution mirrors the Python approach using a hash for frequency counting and a recursive function.
sub delete_and_earn { my %freq = map { $_ => 1 + $freq{$_} // 0 } @_; return max_score(\%freq); } sub max_score { my $freq = shift; my $max_points = 0; foreach my $num (keys %$freq) { my $points = $num * $freq->{$num}; my %new_freq = %$freq; delete $new_freq{$num}; delete $new_freq{$num - 1}; delete $new_freq{$num + 1}; $max_points = max($max_points, $points + (0 || max_score(\%new_freq))); } return $max_points; } sub max { return shift if @_ == 1; return $_[0] > $_[1] ? $_[0] : $_[1]; }
Examples:
<code># Python print(delete_and_earn([3, 4, 2])) # Output: 6 print(delete_and_earn([2, 2, 3, 3, 3, 4])) # Output: 9 # Perl print delete_and_earn(3, 4, 2), "\n"; # Output: 6 print delete_and_earn(2, 2, 3, 3, 3, 4), "\n"; # Output: 9</code>
These solutions demonstrate efficient and clear approaches to solving both tasks in the Weekly Challenge 303. The use of both Python and Perl highlights the transferable nature of algorithmic problem-solving across different programming languages.
The above is the detailed content of Earn with igits. For more information, please follow other related articles on the PHP Chinese website!

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!
