


On tables using composite primary keys in PostgreSQL SELECT DISTINCT
Reasons for slow query speed and optimization methods
In a PostgreSQL database, SELECT DISTINCT
the execution speed of a query depends on the table structure and data distribution. Although the tickers
column in the product_id
table is part of a composite primary key and is therefore indexed on it, a query that uses SELECT DISTINCT product_id FROM tickers
to get unique product_id
performs a sequential scan by default.
Reasons for slow performance
The main reason for the slow performance of is that there are duplicate values of product_id
in the table. This means that for each unique product_id
retrieved, PostgreSQL must scan the entire table to ensure that there are no duplicates.
Solution: simulate index skip scan
Since PostgreSQL does not yet natively support index skip scans, you can use recursive CTEs (common table expressions) to simulate this behavior. This CTE iteratively retrieves and discards duplicates, effectively filtering out all but one instance of each unique product_id
.
Improved solution
WITH RECURSIVE cte AS ( ( -- 括号必需 SELECT product_id FROM tickers ORDER BY 1 LIMIT 1 ) UNION ALL SELECT l.* FROM cte c CROSS JOIN LATERAL ( SELECT product_id FROM tickers t WHERE t.product_id > c.product_id -- 横向引用 ORDER BY 1 LIMIT 1 ) l ) TABLE cte;
This query uses a horizontal join to traverse the sorted table and retrieve unique orderBy
values using product_id
.
Conclusion
The execution time of SELECT DISTINCT product_id
queries can be significantly improved by simulating an index skip scan using the CTE method, thereby reducing the time required to retrieve unique tickers
s from the product_id
table.
The above is the detailed content of Why is SELECT DISTINCT Slow on a Table with a Composite Primary Key in PostgreSQL, and How Can It Be Optimized?. For more information, please follow other related articles on the PHP Chinese website!

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Atom editor mac version download
The most popular open source editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
