Efficient management of IP address ranges is critical in network engineering, cloud infrastructure, and cybersecurity. CIDR (Classless Inter-Domain Routing) blocks provide a compact way to represent IP address ranges but handling them manually can be cumbersome. Enter the CIDR-Converter, a Go-based utility designed to simplify this process while supporting expanded input formats.
Check out my repo here:
pat-glitch
/
cidr-converter
A CIDR block-converter
CIDR Convert
A command-line utility written in Go that processes, validates, and merges IP address ranges in various formats. The tool supports CIDR notation, wildcard notation, and multiple input/output formats.
Features
Input Processing
- Multiple input formats supported:
- CIDR notation (e.g., "192.168.1.0/24")
- Wildcard notation (e.g., "192.168.1.*")
- CSV files containing CIDR blocks
- JSON files containing CIDR blocks
- Interactive stdin mode for manual input
CIDR Operations
- Validates IP ranges and CIDR blocks
- Converts wildcard notation to CIDR format
- Merges overlapping CIDR blocks
- Sorts CIDR blocks for optimal organization
Output Handling
- Automatically saves merged results to JSON file
- Pretty-printed JSON output
- Comprehensive error handling and reporting
Installation
Ensure you have Go installed on your system, then:
git clone [repository-url] cd [repository-name] go build
Usage
The tool supports three input modes:
1. Standard Input Mode
git clone [repository-url] cd [repository-name] go build…
I'm also planning to create a web-app with additional features, to increase functionality and scope of the application!
This project was inspired by Andy Walker's cidr-convert repository.
Key Features
1. Flexible Input Formats
- Supports traditional CIDR notation (e.g., 192.168.0.0/24)
- Parses wildcard notations (e.g., 192.168..)
- Converts binary strings into CIDR blocks (e.g., 11000000101010000000000000000000/24)
- Reads CIDRs from CSV and JSON files
2. Intelligent Merging
- Merges overlapping CIDRs into a minimal set, reducing redundancy
- Aggregates smaller subnets into larger ones where feasible
3. File I/O Support
- Parses input from files or standard input
- Saves merged CIDRs to a JSON file for easy sharing and storage
The Problem It Solves
Handling large lists of CIDRs can be tedious, especially when dealing with overlapping or adjacent ranges. Manually aggregating these ranges is error-prone and time-consuming. This tool automates the process, ensuring optimal aggregation and reducing the risk of mismanagement.
How It Works
Core Functionalities
1. CIDR Parsing and Validation
The parseCIDR function ensures input conforms to valid CIDR notation.
2. Wildcard and Binary Parsing
- Wildcards (e.g., 192.168..) are converted into CIDRs by analyzing the mask length
- Binary strings (e.g., 11000000101010000000000000000000/24) are translated into IP addresses
3. CIDR Merging
- The mergeCIDRs function removes redundancy by merging overlapping ranges
- The aggregateCIDRs function combines smaller subnets into larger, encompassing blocks
4. File Parsing
Reads CIDRs from CSV and JSON formats using parseCSV and parseJSON functions.
5. Output
The merged CIDRs are saved to a JSON file for easy consumption by other tools or teams.
Example Usage
Command-Line Execution
Run the tool directly from the terminal, specifying input type:
git clone [repository-url] cd [repository-name] go build
Sample Output
Given the input:
./cidr-processor <span># Enter CIDR blocks interactively, one per line:</span> 192.168.1.0/24 10.0.0.* <span># Press Ctrl+D (Linux/Mac) or Ctrl+Z (Windows) to</span>
The tool outputs a single aggregated block:
# Standard input $ go run main.go Enter CIDR blocks, one per line. Press Ctrl+D (Linux/Mac) or Ctrl+Z (Windows) to end input: 192.168.0.0/24 192.168.1.0/24 # CSV Input $ go run main.go input.csv # JSON Input $ go run main.go input.json
Saved to merged_cidrs.json.
Code Walkthrough
Parsing Wildcard Notation
Wildcards like 192.168.. are converted into CIDRs:
192.168.0.0/24 192.168.1.0/24
The function calculates the appropriate prefix length and constructs a CIDR block.
Merging and Aggregation
The mergeCIDRs function eliminates redundancy:
[ "192.168.0.0/23" ]
Aggregation follows with:
git clone [repository-url] cd [repository-name] go build
This step combines adjacent ranges into larger blocks.
File Parsing
CSV and JSON input files are parsed with parseCSV and parseJSON, enabling seamless integration with existing workflows:
./cidr-processor <span># Enter CIDR blocks interactively, one per line:</span> 192.168.1.0/24 10.0.0.* <span># Press Ctrl+D (Linux/Mac) or Ctrl+Z (Windows) to</span>
Why Go?
Go's robust standard library, including packages like net, regexp, and encoding/json, makes it an excellent choice for building network-related tools. Its strong concurrency model ensures high performance, even with large datasets.
Future Enhancements
1. IPv6 Support
- Extend functionality to handle IPv6 ranges
2. Dynamic Input Formats
- Add support for YAML and XML
3. Web Interface
- Build a lightweight web application for interactive CIDR management
Conclusion
The Enhanced CIDR Block Calculator simplifies CIDR management with expanded input formats, intelligent merging, and robust file support. Its versatility makes it a valuable tool for network engineers, cloud architects, and cybersecurity professionals. Inspired by Andy Walker's cidr-convert, this tool builds upon foundational ideas to offer a more comprehensive solution. Give it a try and streamline your CIDR workflows today!
The above is the detailed content of Enhanced CIDR Block Calculator with Expanded Input Formats in Go. For more information, please follow other related articles on the PHP Chinese website!

Mastering the strings package in Go language can improve text processing capabilities and development efficiency. 1) Use the Contains function to check substrings, 2) Use the Index function to find the substring position, 3) Join function efficiently splice string slices, 4) Replace function to replace substrings. Be careful to avoid common errors, such as not checking for empty strings and large string operation performance issues.

You should care about the strings package in Go because it simplifies string manipulation and makes the code clearer and more efficient. 1) Use strings.Join to efficiently splice strings; 2) Use strings.Fields to divide strings by blank characters; 3) Find substring positions through strings.Index and strings.LastIndex; 4) Use strings.ReplaceAll to replace strings; 5) Use strings.Builder to efficiently splice strings; 6) Always verify input to avoid unexpected results.

ThestringspackageinGoisessentialforefficientstringmanipulation.1)Itofferssimpleyetpowerfulfunctionsfortaskslikecheckingsubstringsandjoiningstrings.2)IthandlesUnicodewell,withfunctionslikestrings.Fieldsforwhitespace-separatedvalues.3)Forperformance,st

WhendecidingbetweenGo'sbytespackageandstringspackage,usebytes.Bufferforbinarydataandstrings.Builderforstringoperations.1)Usebytes.Bufferforworkingwithbyteslices,binarydata,appendingdifferentdatatypes,andwritingtoio.Writer.2)Usestrings.Builderforstrin

Go's strings package provides a variety of string manipulation functions. 1) Use strings.Contains to check substrings. 2) Use strings.Split to split the string into substring slices. 3) Merge strings through strings.Join. 4) Use strings.TrimSpace or strings.Trim to remove blanks or specified characters at the beginning and end of a string. 5) Replace all specified substrings with strings.ReplaceAll. 6) Use strings.HasPrefix or strings.HasSuffix to check the prefix or suffix of the string.

Using the Go language strings package can improve code quality. 1) Use strings.Join() to elegantly connect string arrays to avoid performance overhead. 2) Combine strings.Split() and strings.Contains() to process text and pay attention to case sensitivity issues. 3) Avoid abuse of strings.Replace() and consider using regular expressions for a large number of substitutions. 4) Use strings.Builder to improve the performance of frequently splicing strings.

Go's bytes package provides a variety of practical functions to handle byte slicing. 1.bytes.Contains is used to check whether the byte slice contains a specific sequence. 2.bytes.Split is used to split byte slices into smallerpieces. 3.bytes.Join is used to concatenate multiple byte slices into one. 4.bytes.TrimSpace is used to remove the front and back blanks of byte slices. 5.bytes.Equal is used to compare whether two byte slices are equal. 6.bytes.Index is used to find the starting index of sub-slices in largerslices.

Theencoding/binarypackageinGoisessentialbecauseitprovidesastandardizedwaytoreadandwritebinarydata,ensuringcross-platformcompatibilityandhandlingdifferentendianness.ItoffersfunctionslikeRead,Write,ReadUvarint,andWriteUvarintforprecisecontroloverbinary


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor
