Home >Java >javaTutorial >Spring Boot pplication on AWS Lambda - Part Measuring cold and warm starts with GraalVM Native Image and memory settings

Spring Boot pplication on AWS Lambda - Part Measuring cold and warm starts with GraalVM Native Image and memory settings

Linda Hamilton
Linda HamiltonOriginal
2025-01-07 07:17:41239browse

Spring Boot pplication on AWS Lambda - Part Measuring cold and warm starts with GraalVM Native Image and memory settings

Introduction

In the article part 12 of our series we explored how to develop and deploy Lambda function with Custom Runtime containing GraalVM Native Image with GraalVM 22 runtime created from Spring Cloud Function AWS application. In the part 13 we measured performance (cold and warm starts) of such a Lambda function with 1024 MB of memory.

In this article, we'll measure the performance (cold and warm starts) of the Lambda function using this approach with different memory settings between 256 and 1536 MBs to explore the trade-off between cost and performance.

Measuring cold and warm starts of Lambda function with Custom Runtime containing GraalVM Native Image with different memory settings

We'll re-use exact the same experiment described in the part 13 of this article series but with different memory settings between 256 and 1536 MBs.

Here are results of the experiment:

Cold (c) and warm (m) start time in ms:

Memory setting c p50 c p75 c p90 c p99 c p99.9 c max w p50 w p75 w p90 w p99 w p99.9 w max
256 MB 1634.84 1659.54 1691.35 1778.03 1785.15 1785.7 6.56 6.99 7.63 18.33 372.54 857.7
512 MB 1244.44 1278.48 1313.45 1414.28 1421.36 1421.94 6.66 7.10 7.94 25.41 181.86 414.99
768 MB 1111.53 1126.07 1139.66 1192.08 1202.86 1203.07 6.58 6.93 7.48 12.46 115.18 278.91
1024 MB 1051.03 1061.58 1080.86 1119.34 1149.45 1230.28 6.45 6.77 7.33 12.50 90.92 218.17
1280 MB 1022.02 1035.39 1058.41 1065.76 1104.64 1174.79 6.58 6.96 7.54 12.37 70.77 271.13
1536 MB 1009.83 1029.20 1048.41 1161.32 1116.24 1148.24 6.66 7.04 7.75 12.08 63.03 215.62

Conclusion

In this article, measured cold and warms starts of the Lambda function using Custom Runtime containing GraalVM Native Image with GraalVM 21 runtime created from Spring Cloud Function AWS application introduced in the part 12 having different memory settings between 256 and 1536 MBs.

We observe similar things as described in the article Pure Lambda function with GraalVM Native Image - Measuring cold and warm starts using different Lambda memory settings. Warm start times are very close to each other also with the lower Lambda function memory setting like 256 or 512 MBs where the difference is mainly visible for the high percentiles (>= p90). The cold start times are quite high for 256 and 512 MBs and starting from 768 MBs of memory they decrease only a bit by giving Lambda more memory, but without any noticeable difference for memory greater than 1024 MB. Depending on your performance requirements you can give Lambda less memory than 1024 MBs as we initial gave in the sample application and have a very good price performance trade-off with 768 MB or even a bit less memory.

We also shared the same observations as described in the conclusion of the part 13. When we compare cold start times to those measured in the article Pure Lambda function with GraalVM Native Image - Measuring cold and warm starts using different Lambda memory settings (where Lambda function doesn't use any framework like Spring Boot), we see values about 0.5-0.6 seconds lower for each percentile when using pure Lambda function. I personally think that my sample Spring Boot 3 application has some optimization potential as I can't explain such a big difference in the cold start times between those. My (maybe naive) expectation is that the use of the Spring Boot 3 framework with AWS Lambda and GraalVM Native image may only lead to 0.2-0.3 higher cold start times comparing to the usage of the pure Lambda function.

At the time of publishing this article newer versions of frameworks and tools in use became available (GraalVM 23 runtime, Spring Boot 3.4 and version update of Spring Cloud Function library) so you case make the version changes and re-compile GraalVM Native image following the instructions from the part 2 of the series and re-measure the performance. I'll also soon publish the new measurements with these versions and upgrade the example application.

The above is the detailed content of Spring Boot pplication on AWS Lambda - Part Measuring cold and warm starts with GraalVM Native Image and memory settings. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn