Buy Me a Coffee☕
*My post explains ImageNet.
ImageNet() can use ImageNet dataset as shown below:
*Memos:
- The 1st argument is root(Required-Type:str or pathlib.Path). *An absolute or relative path is possible.
- The 2nd argument is split(Optional-Default:"train"-Type:str):
*Memos:
- "train"(1,281,167 images) or "val"(50,000 images) can be set to it.
- "test"(100,000 images) isn't supported so I requested the feature on GitHub.
- There is transform argument(Optional-Default:None-Type:callable). *transform= must be used.
- There is target_transform argument(Optional-Default:None-Type:callable). - There is transform argument(Optional-Default:None-Type:callable). *target_transform= must be used.
- There is loader argument(Optional-Default:torchvision.datasets.folder.default_loader-Type:callable). *loader= must be used.
- You have to manually download the dataset(ILSVRC2012_devkit_t12.tar.gz, ILSVRC2012_img_train.tar and ILSVRC2012_img_val.tar to data/, then running ImageNet() extracts and loads the dataset.
- About the label from the classes for the train and validation image indices respectively, tench&Tinca tinca(0) are 0~1299 and 0~49, goldfish&Carassius auratus(1) are 1300~2599 and 50~99, great white shark&white shark&man-eater&man-eating shark&Carcharodon carcharias(2) are 2600~3899 and 100~149, tiger shark&Galeocerdo cuvieri(3) are 3900~5199 and 150~199, hammerhead&hammerhead shark(4) are 5200~6499 and 200~249, electric ray&crampfish&numbfish&torpedo(5) are 6500~7799 and 250~299, stingray(6) is 7800~9099 and 250~299, cock(7) is 9100~10399 and 300~349, hen(8) is 10400~11699 and 350~399, ostrich&Struthio camelus(9) are 11700~12999 and 400~449, etc.
from torchvision.datasets import ImageNet from torchvision.datasets.folder import default_loader train_data = ImageNet( root="data" ) train_data = ImageNet( root="data", split="train", transform=None, target_transform=None, loader=default_loader ) val_data = ImageNet( root="data", split="val" ) len(train_data), len(val_data) # (1281167, 50000) train_data # Dataset ImageNet # Number of datapoints: 1281167 # Root location: D:/data # Split: train train_data.root # 'data' train_data.split # 'train' print(train_data.transform) # None print(train_data.target_transform) # None train_data.loader # <function torchvision.datasets.folder.default_loader str> Any> len(train_data.classes), train_data.classes # (1000, # [('tench', 'Tinca tinca'), ('goldfish', 'Carassius auratus'), # ('great white shark', 'white shark', 'man-eater', 'man-eating shark', # 'Carcharodon carcharias'), ('tiger shark', 'Galeocerdo cuvieri'), # ('hammerhead', 'hammerhead shark'), ('electric ray', 'crampfish', # 'numbfish', 'torpedo'), ('stingray',), ('cock',), ('hen',), # ('ostrich', 'Struthio camelus'), ..., ('bolete',), ('ear', 'spike', # 'capitulum'), ('toilet tissue', 'toilet paper', 'bathroom tissue')]) train_data[0] # (<pil.image.image image mode="RGB" size="250x250">, 0) train_data[1] # (<pil.image.image image mode="RGB" size="200x150">, 0) train_data[2] # (<pil.image.image image mode="RGB" size="500x375">, 0) train_data[1300] # (<pil.image.image image mode="RGB" size="640x480">, 1) train_data[2600] # (<pil.image.image image mode="RGB" size="500x375">, 2) val_data[0] # (<pil.image.image image mode="RGB" size="500x375">, 0) val_data[1] # (<pil.image.image image mode="RGB" size="500x375">, 0) val_data[2] # (<pil.image.image image mode="RGB" size="500x375">, 0) val_data[50] # (<pil.image.image image mode="RGB" size="500x500">, 1) val_data[100] # (<pil.image.image image mode="RGB" size="679x444">, 2) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): plt.figure(figsize=[12, 6]) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(iterable=ims, start=1): plt.subplot(2, 5, i) im, lab = data[j] plt.imshow(X=im) plt.title(label=lab) plt.tight_layout(h_pad=3.0) plt.show() train_ims = [0, 1, 2, 1300, 2600, 3900, 5200, 6500, 7800, 9100] val_ims = [0, 1, 2, 50, 100, 150, 200, 250, 300, 350] show_images(data=train_data, ims=train_ims, main_title="train_data") show_images(data=val_data, ims=val_ims, main_title="val_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></function>
The above is the detailed content of ImageNet in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version
Recommended: Win version, supports code prompts!

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
