The women of the Six Triple Eight faced a monumental challenge: deciphering incomplete addresses, nicknames, and smudged handwriting under strict time constraints. Similarly, when fine-tuning custom data with OpenAI data, understanding token usage is crucial—not only to ensure the model can handle complex tasks but also to manage costs effectively.
Using Tiktoken, we calculate the token count in our text data to stay within OpenAI's token limits and optimize efficiency. Fine-tuning a model isn’t just a technical challenge; it comes with financial implications. OpenAI's pricing, for instance, shows that fine-tuning GPT-3.5 Turbo costs $0.008 per 1,000 tokens. To put it into perspective, 1,000 tokens roughly equate to 750 words.
In short, fine-tuning can be expensive, with costs scaling directly with token usage. Planning and budgeting ahead—just as the Six Triple Eight meticulously sorted through their backlog—are key to success.
Code
import tiktoken def cal_num_tokens_from_row(string:str,encoding_name:str)-> int: encoding = tiktoken.encoding_for_model(encoding_name) num_tokens = len(encoding.encode(string)) return num_tokens def cal_num_tokens_from_df(df,encoding_name:str) -> int: total_tokens = 0 for text in df['text']: total_tokens += cal_num_tokens_from_row(text,encoding_name) return total_tokens total_tokens = cal_num_tokens_from_df(df,'gpt-3.5-turbo') print(f"total {total_tokens}")
Based on the total token count, fine-tuning could cost around $8–$9, which might be prohibitively expensive for an individual. Planning and budgeting are essential to manage these costs effectively.
The above is the detailed content of Counting Tokens: Sorting Through the Details. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Chinese version
Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
