When working with React, sooner or later you are going to run into situations where you need to execute tasks that take time, like checking an API every so often to see if a process has finished. If you don't handle it well, you can crash the app or saturate the browser. To avoid that, we can use Web Workers.
I'm going to explain to you an example I made to monitor the status of a report that is generated in the backend.
What do we need to do?
Call the API to start the report generation process.
Get a task_id that identifies that task.
Check every 30 seconds if the task is finished.
Handle all this without affecting the user interface.
The trick here is to use a Web Worker, which is like a background helper that does all the heavy lifting without blocking the app.
The Code
Step 1: Configure Axios for the API
The first thing is to prepare Axios so that it can connect to the API. Here I configure a client that has the base URL and the headers I need:
import axios from "axios"; export const apiClient = axios.create({ baseURL: "https://example.com/api", // Cambia esta URL por la base de tu API headers: { "Content-Type": "application/json", Accept: "application/json", }, });
Step 2: Create the Web Worker
The Web Worker is where the magic happens. Basically this guy is checking the API every 30 seconds to see if the task is already finished:
self.onmessage = async (event) => { const { task_id, apiEndpoint } = event.data; const checkTaskStatus = async () => { try { const response = await fetch(`${apiEndpoint}/${task_id}`); const task = await response.json(); self.postMessage(task); if (task.status !== "SUCCESS" && task.status !== "FAILURE") { setTimeout(checkTaskStatus, 30000); } } catch (error) { console.error("Error en el Worker:", error); } }; checkTaskStatus(); };
Step 3: Manage the Worker in React
In your React app, you need to control this Web Worker: start it, pass data to it, and manage the responses it sends you.
export class AsyncTaskManager { private worker: Worker | null = null; public async startTask(taskId: string, apiEndpoint: string, onResult: (data: any) => void) { if (this.worker) { this.worker.terminate(); } this.worker = new Worker(new URL("./GenericWorker.js", import.meta.url), { type: "module" }); this.worker.postMessage({ task_id: taskId, apiEndpoint }); this.worker.onmessage = (event) => { const data = event.data; onResult(data); if (data.status === "SUCCESS" || data.status === "FAILURE") { this.stopWorker(); } }; } public stopWorker() { if (this.worker) { this.worker.terminate(); this.worker = null; } } }
Step 4: Use in the component
Now, in the React component, we use the AsyncTaskManager to manage the task. The process includes starting the task, displaying a loading, and updating the status when the result of the task is received:
import React, { useState } from "react"; import { AsyncTaskManager } from "./AsyncTaskManager"; const taskManager = new AsyncTaskManager(); export const ExampleComponent = () => { const [isLoading, setIsLoading] = useState(false); const [result, setResult] = useState(null); const handleStartTask = async () => { setIsLoading(true); // Simula el inicio de una tarea en el backend const response = await fetch("https://example.com/api/start-task", { method: "POST", headers: { "Content-Type": "application/json", }, }); const { task_id } = await response.json(); taskManager.startTask(task_id, "https://example.com/api/task-status", (data) => { if (data.status === "SUCCESS" || data.status === "FAILURE") { setIsLoading(false); setResult(data.result); // Maneja el resultado de la tarea } }); }; return ( <div> <button onclick="{handleStartTask}" disabled> {isLoading ? "Procesando..." : "Iniciar Tarea"} </button> {result && <div>Resultado: {JSON.stringify(result)}</div>} </div> ); };
Flow Explanation
Generate the Report: Clicking "Start Task" calls an API that starts the report generation process and returns a task_id.
Background Monitoring: We use a Web Worker that receives this task_id and queries the status API every 30 seconds, sending the task status back to React.
Refresh UI: While the task is running, the UI remains fluid, with a button showing "Processing..." and once the task is completed, showing the result.
Release Resources: When the task finishes (either success or failure), the Worker stops to free resources and avoid unnecessary background processes.
Why do it like this?
This approach is super useful because:
You don't block the user interface while querying the API.
You can handle long processes without the app freezing.
The user always knows what is happening thanks to loaders and notifications.
The above is the detailed content of How to Run Asynchronous Tasks in React Using Web Workers. For more information, please follow other related articles on the PHP Chinese website!

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools
