


Calculating Working Hours Between Dates in PostgreSQL
Introduction
In various scenarios, determining the number of working hours between two timestamps can prove to be essential in fields such as payroll and scheduling. In PostgreSQL, this calculation requires careful consideration of weekday and time-specific parameters. This article outlines a comprehensive solution, taking into account the following criteria:
- Weekends (Saturdays and Sundays) are excluded from working hours.
- Working hours are defined as Monday through Friday, 8 am to 3 pm.
- Fractional hours are to be included in the calculation.
Solution
Method 1: Rounded Results for Just Two Timestamps
This approach operates on units of 1 hour, ignoring fractional hours. It is a simple but less precise method.
Query:
SELECT count(*) AS work_hours FROM generate_series (timestamp '2013-06-24 13:30' , timestamp '2013-06-24 15:29' - interval '1h' , interval '1h') h WHERE EXTRACT(ISODOW FROM h) = '08:00' AND h::time <= '14:00';
Example Input:
2013-06-24 13:30, 2013-06-24 15:29
Output:
2
Method 2: Rounded Results for a Table of Timestamps
This approach extends the previous method to handle a table of timestamp pairs.
Query:
SELECT t_id, count(*) AS work_hours FROM ( SELECT t_id, generate_series (t_start, t_end - interval '1h', interval '1h') AS h FROM t ) sub WHERE EXTRACT(ISODOW FROM h) = '08:00' AND h::time <p><strong>Method 3: More Precise Calculation</strong></p><p>For a finer-grained calculation, smaller time units can be considered.</p><p><strong>Query:</strong></p><pre class="brush:php;toolbar:false">SELECT t_id, count(*) * interval '5 min' AS work_interval FROM ( SELECT t_id, generate_series (t_start, t_end - interval '5 min', interval '5 min') AS h FROM t ) sub WHERE EXTRACT(ISODOW FROM h) = '08:00' AND h::time <p><strong>Example Input:</strong></p><pre class="brush:php;toolbar:false">| t_id | t_start | t_end | |------|-------------------------|-------------------------| | 1 | 2009-12-03 14:00:00 | 2009-12-04 09:00:00 | | 2 | 2009-12-03 15:00:00 | 2009-12-07 08:00:00 | | 3 | 2013-06-24 07:00:00 | 2013-06-24 12:00:00 | | 4 | 2013-06-24 12:00:00 | 2013-06-24 23:00:00 | | 5 | 2013-06-23 13:00:00 | 2013-06-25 11:00:00 | | 6 | 2013-06-23 14:01:00 | 2013-06-24 08:59:00 |
Output:
| t_id | work_interval | |------|----------------| | 1 | 1 hour | | 2 | 8 hours | | 3 | 0 hours | | 4 | 0 hours | | 5 | 6 hours | | 6 | 1 hour |
Method 4: Exact Results
This approach provides exact results with microsecond precision. It is more complex but more computationally efficient.
Query:
WITH var AS (SELECT '08:00'::time AS v_start , '15:00'::time AS v_end) SELECT t_id , COALESCE(h.h, '0') -- add / subtract fractions - CASE WHEN EXTRACT(ISODOW FROM t_start) v_start AND t_start::time v_start AND t_end::time = v_start AND h::time <p>This comprehensive solution addresses the need to calculate working hours accurately and efficiently in PostgreSQL.</p>
The above is the detailed content of How Can I Calculate Working Hours Between Dates in PostgreSQL, Considering Weekends and Specific Working Hours?. For more information, please follow other related articles on the PHP Chinese website!

ACID attributes include atomicity, consistency, isolation and durability, and are the cornerstone of database design. 1. Atomicity ensures that the transaction is either completely successful or completely failed. 2. Consistency ensures that the database remains consistent before and after a transaction. 3. Isolation ensures that transactions do not interfere with each other. 4. Persistence ensures that data is permanently saved after transaction submission.

MySQL is not only a database management system (DBMS) but also closely related to programming languages. 1) As a DBMS, MySQL is used to store, organize and retrieve data, and optimizing indexes can improve query performance. 2) Combining SQL with programming languages, embedded in Python, using ORM tools such as SQLAlchemy can simplify operations. 3) Performance optimization includes indexing, querying, caching, library and table division and transaction management.

MySQL uses SQL commands to manage data. 1. Basic commands include SELECT, INSERT, UPDATE and DELETE. 2. Advanced usage involves JOIN, subquery and aggregate functions. 3. Common errors include syntax, logic and performance issues. 4. Optimization tips include using indexes, avoiding SELECT* and using LIMIT.

MySQL is an efficient relational database management system suitable for storing and managing data. Its advantages include high-performance queries, flexible transaction processing and rich data types. In practical applications, MySQL is often used in e-commerce platforms, social networks and content management systems, but attention should be paid to performance optimization, data security and scalability.

The relationship between SQL and MySQL is the relationship between standard languages and specific implementations. 1.SQL is a standard language used to manage and operate relational databases, allowing data addition, deletion, modification and query. 2.MySQL is a specific database management system that uses SQL as its operating language and provides efficient data storage and management.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Key metrics for EXPLAIN commands include type, key, rows, and Extra. 1) The type reflects the access type of the query. The higher the value, the higher the efficiency, such as const is better than ALL. 2) The key displays the index used, and NULL indicates no index. 3) rows estimates the number of scanned rows, affecting query performance. 4) Extra provides additional information, such as Usingfilesort prompts that it needs to be optimized.

Usingtemporary indicates that the need to create temporary tables in MySQL queries, which are commonly found in ORDERBY using DISTINCT, GROUPBY, or non-indexed columns. You can avoid the occurrence of indexes and rewrite queries and improve query performance. Specifically, when Usingtemporary appears in EXPLAIN output, it means that MySQL needs to create temporary tables to handle queries. This usually occurs when: 1) deduplication or grouping when using DISTINCT or GROUPBY; 2) sort when ORDERBY contains non-index columns; 3) use complex subquery or join operations. Optimization methods include: 1) ORDERBY and GROUPB


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor