Motivation
Following my “holiday” tests (previous posts…) on using Golang and LLMs, I was looking for an easy way to implement LangChain calling in Go, and preferably using watsonx.ai.
Luckily I found the following Github repository: https://github.com/tmc/langchaingo (curtsy to Travis Cline https://github.com/tmc).
In his repository, there is this specific folder: https://github.com/tmc/langchaingo/blob/main/examples/watsonx-llm-example/watsonx_example.go which caught my attention!
So as usual I built a project and tried to implement it and also put my own ideas (à ma sauce ?).
Implementation
As usual as there is a need on environment variables, I set up an .env file which is later used in the app.
export WATSONX_API_KEY="your-watsonx-api-key" export WATSONX_PROJECT_ID="your-watsonx-projectid" # I used the US-SOUTH, could be any other region of IBM Cloud export SERVICE_URL="https://us-south.ml.cloud.ibm.com"
In a previous post I mentioned trying to count the number of tokens sent to and received from a LLM. That work is still WIP, so I used directly the “tiktoken-go” library inside my app with an idea of making some changes to it (in a near future?). Anyways, in the case of my current state of progress it does not really work, but it is there.
For the app by itself, I used Travis’ code from his repository almost as is, and added and wrapped it with the following features;
- using a dialog box for the prompt input (? I love dialog-boxes ?)
- “attempt” to count the number of “tokens” sent to and received back from the LLM. The code by itself is the following;
package main import ( "context" "fmt" "log" "os" "os/exec" "runtime" "fyne.io/fyne/v2" "fyne.io/fyne/v2/app" "fyne.io/fyne/v2/container" "fyne.io/fyne/v2/dialog" "fyne.io/fyne/v2/widget" "github.com/joho/godotenv" "github.com/pkoukk/tiktoken-go" "github.com/tmc/langchaingo/llms" "github.com/tmc/langchaingo/llms/watsonx" ) const ( _tokenApproximation = 4 ) const ( _gpt35TurboContextSize = 4096 _gpt432KContextSize = 32768 _gpt4ContextSize = 8192 _textDavinci3ContextSize = 4097 _textBabbage1ContextSize = 2048 _textAda1ContextSize = 2048 _textCurie1ContextSize = 2048 _codeDavinci2ContextSize = 8000 _codeCushman1ContextSize = 2048 _textBisonContextSize = 2048 _chatBisonContextSize = 2048 _defaultContextSize = 2048 ) // nolint:gochecknoglobals var modelToContextSize = map[string]int{ "gpt-3.5-turbo": _gpt35TurboContextSize, "gpt-4-32k": _gpt432KContextSize, "gpt-4": _gpt4ContextSize, "text-davinci-003": _textDavinci3ContextSize, "text-curie-001": _textCurie1ContextSize, "text-babbage-001": _textBabbage1ContextSize, "text-ada-001": _textAda1ContextSize, "code-davinci-002": _codeDavinci2ContextSize, "code-cushman-001": _codeCushman1ContextSize, } var tokens int func runCmd(name string, arg ...string) { cmd := exec.Command(name, arg...) cmd.Stdout = os.Stdout cmd.Run() } func ClearTerminal() { switch runtime.GOOS { case "darwin": runCmd("clear") case "linux": runCmd("clear") case "windows": runCmd("cmd", "/c", "cls") default: runCmd("clear") } } func promptEntryDialog() string { var promptEntry string // Create a new Fyne application myApp := app.New() myWindow := myApp.NewWindow("Prompt Entry Dialog") // Variable to store user input var userInput string // Button to show the dialog button := widget.NewButton("Click to Enter your prompt's text", func() { entry := widget.NewEntry() dialog.ShowCustomConfirm("Input Dialog", "OK", "Cancel", entry, func(confirm bool) { if confirm { userInput = entry.Text promptEntry = userInput fmt.Println("User Input:", userInput) // Print to the console myWindow.Close() } }, myWindow) }) // Add the button to the window myWindow.SetContent(container.NewVBox( widget.NewLabel("Click the button below to enter text:"), button, )) // Set the window size and run the application myWindow.Resize(fyne.NewSize(400, 200)) myWindow.ShowAndRun() return promptEntry } func CountTokens(model, text string, inorout string) int { var txtLen int e, err := tiktoken.EncodingForModel(model) if err != nil { e, err = tiktoken.GetEncoding("gpt2") if err != nil { log.Printf("[WARN] Failed to calculate number of tokens for model, falling back to approximate count") txtLen = len([]rune(text)) fmt.Println("Guessed tokens for the "+inorout+" text:", txtLen/_tokenApproximation) return txtLen } } return len(e.Encode(text, nil, nil)) } func GetModelContextSize(model string) int { contextSize, ok := modelToContextSize[model] if !ok { return _defaultContextSize } return contextSize } func CalculateMaxTokens(model, text string) int { return GetModelContextSize(model) - CountTokens(model, text, text) } func main() { var prompt, model string // read the '.env' file err := godotenv.Load() if err != nil { log.Fatal("Error loading .env file") } ApiKey := os.Getenv("WATSONX_API_KEY") if ApiKey == "" { log.Fatal("WATSONX_API_KEY environment variable is not set") } ServiceURL := os.Getenv("SERVICE_URL") if ServiceURL == "" { log.Fatal("SERVICE_URL environment variable is not set") } ProjectID := os.Getenv("WATSONX_PROJECT_ID") if ProjectID == "" { log.Fatal("WATSONX_PROJECT_ID environment variable is not set") } // LLM from watsonx.ai model = "ibm/granite-13b-instruct-v2" // model = "meta-llama/llama-3-70b-instruct" llm, err := watsonx.New( model, //// Optional parameters: to be implemented if needed - Not used at this stage but all ready // wx.WithWatsonxAPIKey(ApiKey), // wx.WithWatsonxProjectID("YOUR WATSONX PROJECT ID"), ) if err != nil { log.Fatal(err) } ctx := context.Background() prompt = promptEntryDialog() // for the output visibility on the consol - getting rid of system messages ClearTerminal() // Use the entry variable here fmt.Println("Calling the llm with the user's prompt:", prompt) tokens = CountTokens(model, prompt, "input") completion, err := llms.GenerateFromSinglePrompt( ctx, llm, prompt, llms.WithTopK(10), llms.WithTopP(0.95), llms.WithSeed(25), ) // Check for errors if err != nil { log.Fatal(err) } fmt.Println(completion) tokens = CountTokens(model, completion, "output") }
Which works fine as the output is shown below.
Calling the llm with the user's prompt: What is the distance in Kilmometers from Earth to Moon? 2024/12/31 11:08:04 [WARN] Failed to calculate number of tokens for model, falling back to approximate count Guessed tokens for the input text: 13 The distance from Earth to the Moon is about 384,400 kilometers. 2024/12/31 11:08:04 [WARN] Failed to calculate number of tokens for model, falling back to approximate count Guessed tokens for the output text: 16 ##### Calling the llm with the user's prompt: What is the name of the capital city of France? 2024/12/31 11:39:28 [WARN] Failed to calculate number of tokens for model, falling back to approximate count Guessed tokens for the input text: 11 Paris 2024/12/31 11:39:28 [WARN] Failed to calculate number of tokens for model, falling back to approximate count Guessed tokens for the output text: 1
Voilà!
Next steps
I would implement the following features for the version 0.2;
- Proposing the model the user wants to use,
- A more accurate way to determine the # of tokens,
- Some real LangChain implementation.
Conclusion
This is a very simple reflection of my work around calling LangChain from a Go application.
Stay tuned for more to come ?
The above is the detailed content of Calling LangChain from Go (Part 1). For more information, please follow other related articles on the PHP Chinese website!

Go's "strings" package provides rich features to make string operation efficient and simple. 1) Use strings.Contains() to check substrings. 2) strings.Split() can be used to parse data, but it should be used with caution to avoid performance problems. 3) strings.Join() is suitable for formatting strings, but for small datasets, looping = is more efficient. 4) For large strings, it is more efficient to build strings using strings.Builder.

Go uses the "strings" package for string operations. 1) Use strings.Join function to splice strings. 2) Use the strings.Contains function to find substrings. 3) Use the strings.Replace function to replace strings. These functions are efficient and easy to use and are suitable for various string processing tasks.

ThebytespackageinGoisessentialforefficientbyteslicemanipulation,offeringfunctionslikeContains,Index,andReplaceforsearchingandmodifyingbinarydata.Itenhancesperformanceandcodereadability,makingitavitaltoolforhandlingbinarydata,networkprotocols,andfileI

Go uses the "encoding/binary" package for binary encoding and decoding. 1) This package provides binary.Write and binary.Read functions for writing and reading data. 2) Pay attention to choosing the correct endian (such as BigEndian or LittleEndian). 3) Data alignment and error handling are also key to ensure the correctness and performance of the data.

The"bytes"packageinGooffersefficientfunctionsformanipulatingbyteslices.1)Usebytes.Joinforconcatenatingslices,2)bytes.Bufferforincrementalwriting,3)bytes.Indexorbytes.IndexByteforsearching,4)bytes.Readerforreadinginchunks,and5)bytes.SplitNor

Theencoding/binarypackageinGoiseffectiveforoptimizingbinaryoperationsduetoitssupportforendiannessandefficientdatahandling.Toenhanceperformance:1)Usebinary.NativeEndianfornativeendiannesstoavoidbyteswapping.2)BatchReadandWriteoperationstoreduceI/Oover

Go's bytes package is mainly used to efficiently process byte slices. 1) Using bytes.Buffer can efficiently perform string splicing to avoid unnecessary memory allocation. 2) The bytes.Equal function is used to quickly compare byte slices. 3) The bytes.Index, bytes.Split and bytes.ReplaceAll functions can be used to search and manipulate byte slices, but performance issues need to be paid attention to.

The byte package provides a variety of functions to efficiently process byte slices. 1) Use bytes.Contains to check the byte sequence. 2) Use bytes.Split to split byte slices. 3) Replace the byte sequence bytes.Replace. 4) Use bytes.Join to connect multiple byte slices. 5) Use bytes.Buffer to build data. 6) Combined bytes.Map for error processing and data verification.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

WebStorm Mac version
Useful JavaScript development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Linux new version
SublimeText3 Linux latest version
