search
HomeBackend DevelopmentGolangHow to Efficiently Decode Large Streaming JSON in Go?

How to Efficiently Decode Large Streaming JSON in Go?

How to Decode Streaming JSON in Go

When working with large JSON responses, it's not ideal to load the entire response into memory before decoding it. Using the ioutil.ReadAll function can lead to memory issues when dealing with large JSON payloads. This article will explore how to decode JSON data on the fly as it streams in, avoiding memory consumption problems.

JSON Streaming with json.Decoder

The json.Decoder in the Go standard library provides the ability to parse JSON streams incrementally. This is achieved through the Decoder.Token() method.

The Decoder.Token() method returns the next token in the JSON stream without consuming it. This allows for selective parsing of JSON data and event-driven processing.

Handling JSON Structures

Event-driven parsing requires a state machine to track the current position within the JSON structure. We can use this state machine to process different parts of the JSON data as they appear in the stream.

For example, let's say we receive a JSON response with the following format:

{
    "property1": "value1",
    "property2": "value2",
    "array": [
        { "item1": "value3" },
        { "item2": "value4" }
    ]
}

We can write a function that incrementally parses this JSON stream and processes the array element separately:

func processJSONStream(stream io.Reader) {
    decoder := json.NewDecoder(stream)

    state := "start"
    for decoder.More() {
        token, err := decoder.Token()
        if err != nil {
            log.Fatal(err)
        }

        switch state {
        case "start":
            if delim, ok := token.(json.Delim); ok && delim == '{' {
                state = "object"
            } else {
                log.Fatal("Expected object")
            }
        case "object":
            switch t := token.(type) {
            case json.Delim:
                if t == '}' {
                    // End of object
                    state = "end"
                } else if t == ',' {
                    // Next property
                    continue
                } else if t == '[' {
                    // Array found
                    state = "array"
                }

                if t == ':' {
                    // Property value expected
                    state = "prop_value"
                }
            case string:
                // Property name
                fmt.Printf("Property '%s'\n", t)
            default:
                // Property value
                fmt.Printf("Value: %v\n", t)
            }
        case "array":
            if delim, ok := token.(json.Delim); ok && delim == ']' {
                // End of array
                state = "object"
            } else if token == json.Delim('{') {
                // Array item object
                fmt.Printf("Item:\n")
                state = "item"
            }
        case "item":
            switch t := token.(type) {
            case json.Delim:
                if t == '}' {
                    // End of item object
                    fmt.Printf("\n")
                    state = "array"
                } else if t == ',' {
                    // Next item property
                    fmt.Printf(",\n")
                    continue
                }
            case string:
                // Item property name
                fmt.Printf("\t'%s'", t)
            default:
                // Item property value
                fmt.Printf(": %v", t)
            }
        case "prop_value":
            // Decode the property value
            var value interface{}
            if err := decoder.Decode(&value); err != nil {
                log.Fatal(err)
            }
            fmt.Printf("Value: %v\n", value)
            state = "object"
        }
    }
}

When called with the JSON response, this function will print the property names and values, as well as the individual items within the array.

Conclusion

Using the json.Decoder and Decoder.Token() in event-driven processing allows us to parse large JSON responses incrementally, avoiding memory consumption issues and enabling efficient processing of data as it streams in.

The above is the detailed content of How to Efficiently Decode Large Streaming JSON in Go?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Golang vs. C  : Code Examples and Performance AnalysisGolang vs. C : Code Examples and Performance AnalysisApr 15, 2025 am 12:03 AM

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Golang's Impact: Speed, Efficiency, and SimplicityGolang's Impact: Speed, Efficiency, and SimplicityApr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C   and Golang: When Performance is CrucialC and Golang: When Performance is CrucialApr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang in Action: Real-World Examples and ApplicationsGolang in Action: Real-World Examples and ApplicationsApr 12, 2025 am 12:11 AM

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

Golang: The Go Programming Language ExplainedGolang: The Go Programming Language ExplainedApr 10, 2025 am 11:18 AM

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Golang's Purpose: Building Efficient and Scalable SystemsGolang's Purpose: Building Efficient and Scalable SystemsApr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Why do the results of ORDER BY statements in SQL sorting sometimes seem random?Why do the results of ORDER BY statements in SQL sorting sometimes seem random?Apr 02, 2025 pm 05:24 PM

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

Is technology stack convergence just a process of technology stack selection?Is technology stack convergence just a process of technology stack selection?Apr 02, 2025 pm 05:21 PM

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools