


Why Does Appending Pointers in a Go `for...range` Loop Produce Unexpected Results?
Understanding Strange Behavior with append in Go
In Go, the append function operates on slices to add new elements. However, users may encounter unexpected behavior when appending pointers to elements from an array within a for range loop.
Consider the following example:
import "fmt" type Foo struct { val int } func main() { var a = make([]*Foo, 1) a[0] = &Foo{0} var b = [3]Foo{Foo{1}, Foo{2}, Foo{3}} for _, e := range b { a = append(a, &e) } for _, e := range a { fmt.Printf("%v ", *e) } }
Expected Output: {0} {1} {2} {3}
Actual Output: {0} {3} {3} {3}
Reason for the Behavior
This unexpected behavior arises because the for range loop iterates over a copy of the elements, not the original elements themselves. In this case, the loop variable e holds a copy of the current element of the array. When the slice is appended, the address of the loop variable is added, which refers to the same memory location for all iterations. Consequently, when the last element of the array is encountered, all appended addresses point to the same element.
Fix
To resolve this issue, the append function should be used with the address of the original array element, not the loop variable. Here is the corrected code:
for i := range b { a = append(a, &b[i]) }
With this modification, the output will be as expected: {0} {1} {2} {3}.
Conclusion
Understanding the difference between pointers and non-pointer types in Go is crucial for proper handling of memory references. When using for range loops, it's essential to consider whether you need to access the original element or a copy, and use the appropriate syntax accordingly.
The above is the detailed content of Why Does Appending Pointers in a Go `for...range` Loop Produce Unexpected Results?. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Zend Studio 13.0.1
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.