Home >Backend Development >Python Tutorial >How to Transform Pandas DataFrame Columns into Rows with a 'Date' and 'Value' Column?

How to Transform Pandas DataFrame Columns into Rows with a 'Date' and 'Value' Column?

Patricia Arquette
Patricia ArquetteOriginal
2024-12-30 09:07:11619browse

How to Transform Pandas DataFrame Columns into Rows with a

Convert Columns into Rows with Pandas

To reshape a dataset from columns to rows, where each column represents a different date and the desired output requires a "Date" column and "Value" column, use the Pandas melt function.

Solution:

df.melt(id_vars=["location", "name"],
        var_name="Date",
        value_name="Value")

Example:

import pandas as pd

df = pd.DataFrame(
    {
        "location": ["A", "B"],
        "name": ["test", "foo"],
        "Jan-2010": [12, 18],
        "Feb-2010": [20, 20],
        "March-2010": [30, 25],
    }
)

result = df.melt(id_vars=["location", "name"],
                  var_name="Date",
                  value_name="Value")

print(result)

Output:

  location  name        Date  Value
0        A  test    Jan-2010     12
1        B   foo    Jan-2010     18
2        A  test    Feb-2010     20
3        B   foo    Feb-2010     20
4        A  test  March-2010     30
5        B   foo  March-2010     25

For Older Versions of Pandas (<0.20):

df2 = pd.melt(df,
                  id_vars=["location", "name"], 
                  var_name="Date",
                  value_name="Value")

df2 = df2.sort(["location", "name"])

# Optionally, reset the index
# df2 = df2.reset_index(drop=True)

This code will sort the output by "location" and "name" and provide a clean output with no index.

Note: In newer versions of Pandas, use sort_values instead of sort.

The above is the detailed content of How to Transform Pandas DataFrame Columns into Rows with a 'Date' and 'Value' Column?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn