Home >Backend Development >C++ >How Can SIMD Instructions Be Used to Optimize the atoi Function?
How to Implement atoi Using SIMD
In this article, we will explore an algorithm for implementing the atoi function, which converts a string representation of an integer into its numerical value, using Single Instruction Multiple Data (SIMD) instructions. By using SIMD, we can potentially achieve significant performance improvements by processing multiple elements in parallel.
The Algorithm
The proposed algorithm consists of the following steps:
Specifically, for each digit in the input string:
Implementation Considerations
When implementing this algorithm in SIMD code, we can take advantage of the inherent parallelism of SIMD instructions to process multiple digits simultaneously. The code should be optimized for the specific SIMD instruction set being used (e.g., SSE4.2, AVX2).
Potential Optimization:
It is possible to further optimize this algorithm by eliminating the need for a separate loop to multiply the significant digits by the powers of 10. This can be achieved by using a technique called "vector indexing with fused multiply-add." This technique allows us to perform both the indexing and the multiplication in a single instruction, improving performance.
An Alternative Suggestion
As suggested by Peter Cordes in the comments, an alternative to the last two add xor instructions is to use an imul (integer multiply) instruction. This has the potential to be more efficient in terms of both code size and performance.
Implementation in GNU Assembler with Intel Syntax
Here is a sample implementation of the algorithm in GNU Assembler with Intel syntax:
.intel_syntax noprefix .data .align 64 ddqDigitRange: .byte '0','9',0,0,0,0,0,0,0,0,0,0,0,0,0,0 ddqShuffleMask:.byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 ddqFactor1: .word 1,10,100,1000, 1,10,100,1000 ddqFactor2: .long 1,10000,100000000,0 .text _start: mov esi, lpInputNumberString /* (**A**) indicate negative number in EDX */ mov eax, -1 xor ecx, ecx xor edx, edx mov bl, byte ptr [esi] cmp bl, '-' cmove edx, eax cmp bl, '+' cmove ecx, eax sub esi, edx sub esi, ecx /* (**B**)remove leading zeros */ xor eax,eax /* return value ZERO */ remove_leading_zeros: inc esi cmp byte ptr [esi-1], '0' /* skip leading zeros */ je remove_leading_zeros cmp byte ptr [esi-1], 0 /* catch empty string/number */ je FINISH dec esi /* check for valid digit-chars and invert from front to back */ pxor xmm2, xmm2 movdqa xmm0, xmmword ptr [ddqDigitRange] movdqu xmm1, xmmword ptr [esi] pcmpistri xmm0, xmm1, 0b00010100 /* (**C**) iim8=Unsigned bytes, Ranges, Negative Polarity(-), returns strlen() in ECX */ jo FINISH /* if first char is invalid return 0 - prevent processing empty string - 0 is still in EAX */ mov al , '0' /* value to subtract from chars */ sub ecx, 16 /* len-16=negative to zero for shuffle mask */ movd xmm0, ecx pshufb xmm0, xmm2 /* broadcast CL to all 16 BYTEs */ paddb xmm0, xmmword ptr [ddqShuffleMask] /* Generate permute mask for PSHUFB - all bytes < 0 have highest bit set means place gets zeroed */ pshufb xmm1, xmm0 /* (**D**) permute - now from highest to lowest BYTE are factors 10^0, 10^1, 10^2, ... */ movd xmm0, eax /* AL='0' from above */ pshufb xmm0, xmm2 /* broadcast AL to XMM0 */ psubusb xmm1, xmm0 /* (**1**) */ movdqa xmm0, xmm1 punpcklbw xmm0, xmm2 /* (**2**) */ punpckhbw xmm1, xmm2 pmaddwd xmm0, xmmword ptr [ddqFactor1] /* (**3**) */ pmaddwd xmm1, xmmword ptr [ddqFactor1] phaddd xmm0, xmm1 /* (**4**) */ pmulld xmm0, xmmword ptr [ddqFactor2] /* (**5**) */ pshufd xmm1, xmm0, 0b11101110 /* (**6**) */ paddd xmm0, xmm1 pshufd xmm1, xmm0, 0b01010101 /* (**7**) */ paddd xmm0, xmm1 movd eax, xmm0 /* negate if negative number */ add eax, edx /* (**8**) */ xor eax, edx FINISH: /* EAX is return (u)int value */
Conclusion
This optimized SIMD implementation of the atoi function can significantly improve performance when processing large amounts of numerical data. By utilizing the parallel processing capabilities of SIMD instructions, we can achieve faster execution times and handle numerical computations more efficiently.
The above is the detailed content of How Can SIMD Instructions Be Used to Optimize the atoi Function?. For more information, please follow other related articles on the PHP Chinese website!