Home >Backend Development >Python Tutorial >Comprehensive Beginners Guide to Generative AI with LangChain and Python - 3
Generative AI enables systems to create text, images, code, or other forms of content based on data and prompts. LangChain is a framework that simplifies working with Generative AI models by orchestrating workflows, managing prompts, and enabling advanced capabilities like memory and tool integration.
This guide introduces the key concepts and tools needed to get started with Generative AI using LangChain and Python.
LangChain is a Python-based framework for building applications with large language models (LLMs) like OpenAI's GPT or Hugging Face models. It helps:
To start, install LangChain and related libraries:
pip install langchain openai python-dotenv streamlit
OPENAI_API_KEY=your_api_key_here
from dotenv import load_dotenv import os load_dotenv() openai_api_key = os.getenv("OPENAI_API_KEY")
Prompts guide the AI to generate desired outputs. LangChain allows you to structure prompts systematically using PromptTemplate.
from langchain.prompts import PromptTemplate # Define a template template = "You are an AI that summarizes text. Summarize the following: {text}" prompt = PromptTemplate(input_variables=["text"], template=template) # Generate a prompt with dynamic input user_text = "Artificial Intelligence is a field of study that focuses on creating machines capable of intelligent behavior." formatted_prompt = prompt.format(text=user_text) print(formatted_prompt)
LangChain integrates with LLMs like OpenAI’s GPT or Hugging Face models. Use ChatOpenAI for OpenAI GPT.
from langchain.chat_models import ChatOpenAI # Initialize the model chat = ChatOpenAI(temperature=0.7, openai_api_key=openai_api_key) # Generate a response response = chat.predict("What is Generative AI?") print(response)
Chains combine multiple steps or tasks into a single workflow. For example, a chain might:
from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # Create a prompt and chain template = "Summarize the following text: {text}" prompt = PromptTemplate(input_variables=["text"], template=template) chain = LLMChain(llm=chat, prompt=prompt) # Execute the chain result = chain.run("Generative AI refers to AI systems capable of creating text, images, or other outputs.") print(result)
Memory enables models to retain context over multiple interactions. This is useful for chatbots.
from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory # Initialize memory and the conversation chain memory = ConversationBufferMemory() conversation = ConversationChain(llm=chat, memory=memory) # Have a conversation print(conversation.run("Hi, who are you?")) print(conversation.run("What did I just ask you?"))
Generate creative responses or content using prompts.
from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate chat = ChatOpenAI(temperature=0.9, openai_api_key=openai_api_key) prompt = PromptTemplate(input_variables=["topic"], template="Write a poem about {topic}.") chain = LLMChain(llm=chat, prompt=prompt) # Generate a poem result = chain.run("technology") print(result)
Summarize documents or text efficiently.
pip install langchain openai python-dotenv streamlit
Build an interactive chatbot with memory.
OPENAI_API_KEY=your_api_key_here
Enable models to access external tools like web search or databases.
from dotenv import load_dotenv import os load_dotenv() openai_api_key = os.getenv("OPENAI_API_KEY")
Create custom workflows by combining multiple tasks.
from langchain.prompts import PromptTemplate # Define a template template = "You are an AI that summarizes text. Summarize the following: {text}" prompt = PromptTemplate(input_variables=["text"], template=template) # Generate a prompt with dynamic input user_text = "Artificial Intelligence is a field of study that focuses on creating machines capable of intelligent behavior." formatted_prompt = prompt.format(text=user_text) print(formatted_prompt)
Build a simple web app for your Generative AI model using Streamlit.
from langchain.chat_models import ChatOpenAI # Initialize the model chat = ChatOpenAI(temperature=0.7, openai_api_key=openai_api_key) # Generate a response response = chat.predict("What is Generative AI?") print(response)
from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # Create a prompt and chain template = "Summarize the following text: {text}" prompt = PromptTemplate(input_variables=["text"], template=template) chain = LLMChain(llm=chat, prompt=prompt) # Execute the chain result = chain.run("Generative AI refers to AI systems capable of creating text, images, or other outputs.") print(result)
Run the app:
from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory # Initialize memory and the conversation chain memory = ConversationBufferMemory() conversation = ConversationChain(llm=chat, memory=memory) # Have a conversation print(conversation.run("Hi, who are you?")) print(conversation.run("What did I just ask you?"))
Learn to fine-tune models like GPT or Stable Diffusion on custom datasets.
Master crafting effective prompts to get the desired outputs.
Work with models that combine text, images, and other modalities (e.g., OpenAI’s DALL·E or CLIP).
Deploy models to production environments using cloud services or tools like Docker.
By following this guide, you’ll gain the foundational knowledge needed to build Generative AI applications with Python and LangChain. Start experimenting, build workflows, and dive deeper into the exciting world of AI!
The above is the detailed content of Comprehensive Beginners Guide to Generative AI with LangChain and Python - 3. For more information, please follow other related articles on the PHP Chinese website!