Home >Backend Development >Python Tutorial >How to Find the Indices of Multiple Maximum Values in a NumPy Array?
Retrieving Indices of Multiple Maximum Values in a NumPy Array
NumPy arrays provide the np.argmax function to locate the index of the maximum element. However, if you require the indices of N maximum values, consider the following solutions:
Recent NumPy Versions:
For NumPy versions 1.8 and above, the argpartition function offers an efficient method:
import numpy as np a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0]) # Get top 4 indices n_max = 4 ind = np.argpartition(a, -n_max)[-n_max:] # Retrieve top 4 values top_max = a[ind]
Older NumPy Versions:
Prior to NumPy 1.8, you can use the argsort function as follows:
# Get top 4 indices n_max = 4 ind = np.argsort(a)[-n_max:] # Retrieve top 4 values top_max = a[ind]
Sorting the Indices:
By default, argpartition returns unsorted indices. If you require sorted indices, use:
ind[np.argsort(a[ind])]
Time Complexity:
The above is the detailed content of How to Find the Indices of Multiple Maximum Values in a NumPy Array?. For more information, please follow other related articles on the PHP Chinese website!