How Can `wait()` and `notify()` Be Used to Implement a Blocking Queue in Java?
Using wait() and notify() to Implement a Blocking Queue
Introduction
In multithreaded programming, wait() and notify() are used for thread synchronization. This article explains how to use wait() and notify() to implement a blocking queue, a data structure that allows threads to block until an item is available or space becomes available.
Implementing a Blocking Queue with wait() and notify()
Conditions for Blocking:
- put() method: Blocks until there is free space in the queue.
- take() method: Blocks until there is an element available in the queue.
Java Code:
public class BlockingQueue<t> { private Queue<t> queue = new LinkedList(); private int capacity; public BlockingQueue(int capacity) { this.capacity = capacity; } public synchronized void put(T element) throws InterruptedException { while (queue.size() == capacity) { wait(); } queue.add(element); notify(); // notifyAll() for multiple producer/consumer threads } public synchronized T take() throws InterruptedException { while (queue.isEmpty()) { wait(); } T item = queue.remove(); notify(); // notifyAll() for multiple producer/consumer threads return item; } }</t></t>
Considerations When Using wait() and notify()
- Synchronized Code: Call wait() and notify() within a synchronized method or block.
- While Loops: Use while loops instead of if statements to check conditions due to spurious wake-ups.
Java 1.5 Concurrency Library
Java 1.5 introduced a concurrency library that provides higher-level abstractions:
Modified Blocking Queue Implementation:
public class BlockingQueue<t> { private Queue<t> queue = new LinkedList(); private int capacity; private Lock lock = new ReentrantLock(); private Condition notFull = lock.newCondition(); private Condition notEmpty = lock.newCondition(); public BlockingQueue(int capacity) { this.capacity = capacity; } public void put(T element) throws InterruptedException { lock.lock(); try { while (queue.size() == capacity) { notFull.await(); } queue.add(element); notEmpty.signal(); } finally { lock.unlock(); } } public T take() throws InterruptedException { lock.lock(); try { while (queue.isEmpty()) { notEmpty.await(); } T item = queue.remove(); notFull.signal(); return item; } finally { lock.unlock(); } } }</t></t>
The above is the detailed content of How Can `wait()` and `notify()` Be Used to Implement a Blocking Queue in Java?. For more information, please follow other related articles on the PHP Chinese website!

JVMmanagesgarbagecollectionacrossplatformseffectivelybyusingagenerationalapproachandadaptingtoOSandhardwaredifferences.ItemploysvariouscollectorslikeSerial,Parallel,CMS,andG1,eachsuitedfordifferentscenarios.Performancecanbetunedwithflagslike-XX:NewRa

Java code can run on different operating systems without modification, because Java's "write once, run everywhere" philosophy is implemented by Java virtual machine (JVM). As the intermediary between the compiled Java bytecode and the operating system, the JVM translates the bytecode into specific machine instructions to ensure that the program can run independently on any platform with JVM installed.

The compilation and execution of Java programs achieve platform independence through bytecode and JVM. 1) Write Java source code and compile it into bytecode. 2) Use JVM to execute bytecode on any platform to ensure the code runs across platforms.

Java performance is closely related to hardware architecture, and understanding this relationship can significantly improve programming capabilities. 1) The JVM converts Java bytecode into machine instructions through JIT compilation, which is affected by the CPU architecture. 2) Memory management and garbage collection are affected by RAM and memory bus speed. 3) Cache and branch prediction optimize Java code execution. 4) Multi-threading and parallel processing improve performance on multi-core systems.

Using native libraries will destroy Java's platform independence, because these libraries need to be compiled separately for each operating system. 1) The native library interacts with Java through JNI, providing functions that cannot be directly implemented by Java. 2) Using native libraries increases project complexity and requires managing library files for different platforms. 3) Although native libraries can improve performance, they should be used with caution and conducted cross-platform testing.

JVM handles operating system API differences through JavaNativeInterface (JNI) and Java standard library: 1. JNI allows Java code to call local code and directly interact with the operating system API. 2. The Java standard library provides a unified API, which is internally mapped to different operating system APIs to ensure that the code runs across platforms.

modularitydoesnotdirectlyaffectJava'splatformindependence.Java'splatformindependenceismaintainedbytheJVM,butmodularityinfluencesapplicationstructureandmanagement,indirectlyimpactingplatformindependence.1)Deploymentanddistributionbecomemoreefficientwi

BytecodeinJavaistheintermediaterepresentationthatenablesplatformindependence.1)Javacodeiscompiledintobytecodestoredin.classfiles.2)TheJVMinterpretsorcompilesthisbytecodeintomachinecodeatruntime,allowingthesamebytecodetorunonanydevicewithaJVM,thusfulf


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)
