Preserve Int64 Values When Parsing JSON in Go
Consider the following JSON body:
{"tags": [{"id": 4418489049307132905}, {"id": 4418489049307132906}]}
When using json.Unmarshal() in Go to process this JSON, the 64-bit integer values (id) are often converted to float64 due to the nature of Go's JSON parser. This can be problematic if you need to preserve their precision.
Solution 1: Custom Decoder
One approach is to use a custom decoder and json.Number type. json.Number is a type that represents JSON number literals.
import ( "encoding/json" "fmt" "bytes" "strconv" ) func main() { body := []byte(`{"tags": [{"id": 4418489049307132905}, {"id": 4418489049307132906}]}`) dat := make(map[string]interface{}) d := json.NewDecoder(bytes.NewBuffer(body)) d.UseNumber() if err := d.Decode(&dat); err != nil { panic(err) } tags := dat["tags"].([]interface{}) n := tags[0].(map[string]interface{})["id"].(json.Number) i64, _ := strconv.ParseUint(string(n), 10, 64) fmt.Println(i64) // Prints 4418489049307132905 }
Solution 2: Custom Structure
Another option is to decode the JSON into a custom structure that specifically matches your data format.
import ( "encoding/json" "fmt" ) type A struct { Tags []map[string]uint64 // "tags" } func main() { body := []byte(`{"tags": [{"id": 4418489049307132905}, {"id": 4418489049307132906}]}`) var a A if err := json.Unmarshal(body, &a); err != nil { panic(err) } fmt.Println(a.Tags[0]["id"]) // Logs 4418489049307132905 }
In this solution, uint64 is used directly in the structure, ensuring that 64-bit integer values are preserved.
The above is the detailed content of How to Preserve Int64 Precision When Unmarshalling JSON in Go?. For more information, please follow other related articles on the PHP Chinese website!

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

ChooseGolangforhighperformanceandconcurrency,idealforbackendservicesandnetworkprogramming;selectPythonforrapiddevelopment,datascience,andmachinelearningduetoitsversatilityandextensivelibraries.

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

In what aspects are Golang and Python easier to use and have a smoother learning curve? Golang is more suitable for high concurrency and high performance needs, and the learning curve is relatively gentle for developers with C language background. Python is more suitable for data science and rapid prototyping, and the learning curve is very smooth for beginners.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Mac version
God-level code editing software (SublimeText3)