Home >Backend Development >Python Tutorial >How to Calculate Group-wise Statistics (Count, Mean, etc.) in Pandas GroupBy?
Problem:
You have a DataFrame df in Pandas and want to compute group-wise statistics such as mean, count, and more on multiple columns.
Quick Answer:
To get row counts per group, simply call .size(), which returns a Series:
df.groupby(['col1','col2']).size()
For a DataFrame result with counts as a column, use:
df.groupby(['col1', 'col2']).size().reset_index(name='counts')
Detailed Example:
Consider the DataFrame df:
col1 col2 col3 col4 col5 col6 0 A B 0.20 -0.61 -0.49 1.49 1 A B -1.53 -1.01 -0.39 1.82 2 A B -0.44 0.27 0.72 0.11 3 A B 0.28 -1.32 0.38 0.18 4 C D 0.12 0.59 0.81 0.66 5 C D -0.13 -1.65 -1.64 0.50 6 C D -1.42 -0.11 -0.18 -0.44 7 E F -0.00 1.42 -0.26 1.17 8 E F 0.91 -0.47 1.35 -0.34 9 G H 1.48 -0.63 -1.14 0.17
Getting Row Counts:
df.groupby(['col1', 'col2']).size()
Output:
col1 col2 A B 4 C D 3 E F 2 G H 1 dtype: int64
Creating a DataFrame with Counts:
df.groupby(['col1', 'col2']).size().reset_index(name='counts')
Output:
col1 col2 counts 0 A B 4 1 C D 3 2 E F 2 3 G H 1
Including Results for More Statistics:
To calculate additional statistics like mean, median, and min, use agg():
(df .groupby(['col1', 'col2']) .agg({ 'col3': ['mean', 'count'], 'col4': ['median', 'min', 'count'] }))
Output:
col4 col3 median min count mean count col1 col2 A B -0.810 -1.32 4 -0.372500 4 C D -0.110 -1.65 3 -0.476667 3 E F 0.475 -0.47 2 0.455000 2 G H -0.630 -0.63 1 1.480000 1
Splitting Statistics into Individual Aggregations:
For more control over the output, split the statistics and combine them using join:
gb = df.groupby(['col1', 'col2']) counts = gb.size().to_frame(name='counts') (counts .join(gb.agg({'col3': 'mean'}).rename(columns={'col3': 'col3_mean'})) .join(gb.agg({'col4': 'median'}).rename(columns={'col4': 'col4_median'})) .join(gb.agg({'col4': 'min'}).rename(columns={'col4': 'col4_min'})) .reset_index() )
Output:
col1 col2 counts col3_mean col4_median col4_min 0 A B 4 -0.372500 -0.810 -1.32 1 C D 3 -0.476667 -0.110 -1.65 2 E F 2 0.455000 0.475 -0.47 3 G H 1 1.480000 -0.630 -0.63
The above is the detailed content of How to Calculate Group-wise Statistics (Count, Mean, etc.) in Pandas GroupBy?. For more information, please follow other related articles on the PHP Chinese website!