CelebA is PyTorch

Susan Sarandon
Susan SarandonOriginal
2024-12-28 02:36:10161browse

Buy Me a Coffee☕

*My post explains CelebA.

CelebA() can use CelebA dataset as shown below:

*Memos:

  • The 1st argument is root(Required-Type:str or pathlib.Path). *An absolute or relative path is possible.
  • The 2nd argument is split(Optional-Default:"train"-Type:str). *"train"(162,770 images), "valid"(19,867 images), "test"(19,962 images) or "all"(202,599 images) can be set to it.
  • The 3rd argument is target_type(Optional-Default:"attr"-Type:str or list of str): *Memos:
    • "attr", "identity", "bbox" and/or "landmarks" can be set to it.
    • An empty list can also be set to it.
    • The multiple same values can be set to it.
    • If the order of values is different, the order of their elements is also different.
  • The 4th argument is transform(Optional-Default:None-Type:callable).
  • The 5th argument is target_transform(Optional-Default:None-Type:callable).
  • The 6th argument is download(Optional-Default:False-Type:bool): *Memos:
    • If it's True, the dataset is downloaded from the internet and extracted(unzipped) to root.
    • If it's True and the dataset is already downloaded, it's extracted.
    • If it's True and the dataset is already downloaded and extracted, nothing happens.
    • It should be False if the dataset is already downloaded and extracted because it's faster.
    • gdown is required to download the dataset.
    • You can manually download and extract the dataset(img_align_celeba.zip with identity_CelebA.txt, list_attr_celeba.txt, list_bbox_celeba.txt, list_eval_partition.txt and list_landmarks_align_celeba.txt) from here to data/celeba/.
from torchvision.datasets import CelebA

train_attr_data = CelebA(
    root="data"
)

train_attr_data = CelebA(
    root="data",
    split="train",
    target_type="attr",
    transform=None,
    target_transform=None,
    download=False
)

valid_identity_data = CelebA(
    root="data",
    split="valid",
    target_type="identity"
)

test_bbox_data = CelebA(
    root="data",
    split="test",
    target_type="bbox"
)

all_landmarks_data = CelebA(
    root="data",
    split="all",
    target_type="landmarks"
)

all_empty_data = CelebA(
    root="data",
    split="all",
    target_type=[]
)

all_all_data = CelebA(
    root="data",
    split="all",
    target_type=["attr", "identity", "bbox", "landmarks"]
)

len(train_attr_data), len(valid_identity_data), len(test_bbox_data)
# (162770, 19867, 19962)

len(all_landmarks_data), len(all_empty_data), len(all_all_data)
# (202599, 202599, 202599)

train_attr_data
# Dataset CelebA
#     Number of datapoints: 162770
#     Root location: data
#     Target type: ['attr']
#     Split: train

train_attr_data.root
# 'data'

train_attr_data.split
# 'train'

train_attr_data.target_type
# ['attr']

print(train_attr_data.transform)
# None

print(train_attr_data.target_transform)
# None

train_attr_data.download
# <bound method CelebA.download of Dataset CelebA
#     Number of datapoints: 162770
#     Root location: data
#     Target type: ['attr']
#     Split: train>

len(train_attr_data.attr), train_attr_data.attr
# (162770, tensor([[0, 1, 1, ..., 0, 0, 1],
#                  [0, 0, 0, ..., 0, 0, 1],
#                  [0, 0, 0, ..., 0, 0, 1],
#                  ...,
#                  [1, 0, 1, ..., 0, 1, 1],
#                  [0, 0, 0, ..., 0, 0, 1],
#                  [0, 1, 1, ..., 1, 0, 1]]))

len(train_attr_data.attr_names), train_attr_data.attr_names
# (41, ['5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 
#       'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose',
#       'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair',
#       ...
#       'Wearing_Necklace', 'Wearing_Necktie', 'Young', ''])

len(train_attr_data.identity), train_attr_data.identity
# (162770, tensor([[2880], [2937], [8692], ..., [7391], [8610], [2304]]))

len(train_attr_data.bbox), train_attr_data.bbox
# (162770, tensor([[95, 71, 226, 313],
#                  [72, 94, 221, 306],
#                  [216, 59, 91, 126],
#                  ...,
#                  [103, 103, 143, 198],
#                  [30, 59, 216, 280],
#                  [376, 4, 372, 515]]))

len(train_attr_data.landmarks_align), train_attr_data.landmarks_align
# (162770, tensor([[69, 109, 106, ..., 152, 108, 154],
#                  [69, 110, 107, ..., 151, 108, 153],
#                  [76, 112, 104, ..., 156, 98, 158],
#                  ...,
#                  [69, 113, 109, ..., 151, 110, 151],
#                  [68, 112, 109, ..., 150, 108, 151],
#                  [70, 111, 107, ..., 153, 102, 152]]))

train_attr_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
#          0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
#          0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
#          0, 1, 1, 0, 1, 0, 1, 0, 0, 1]))

train_attr_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
#          0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
#          0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
#          0, 1, 0, 0, 0, 0, 0, 0, 0, 1]))

train_attr_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
#          1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
#          1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
#          0, 0, 0, 1, 0, 0, 0, 0, 0, 1]))

valid_identity_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor(2594))

valid_identity_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor(2795))

valid_identity_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor(947))

test_bbox_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([147, 82, 120, 166]))

test_bbox_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([106, 34, 140, 194]))

test_bbox_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([107, 78, 109, 151]))

all_landmarks_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([69, 109, 106, 113, 77, 142, 73, 152, 108, 154]))

all_landmarks_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([69, 110, 107, 112, 81, 135, 70, 151, 108, 153]))

all_landmarks_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  tensor([76, 112, 104, 106, 108, 128, 74, 156, 98, 158]))

all_empty_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, None)

all_empty_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, None)

all_empty_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>, None)

all_all_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  (tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
#           0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
#           0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
#           0, 1, 1, 0, 1, 0, 1, 0, 0, 1]),
#   tensor(2880),
#   tensor([95, 71, 226, 313]),
#   tensor([69, 109, 106, 113, 77, 142, 73, 152, 108, 154])))

all_all_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  (tensor([0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
#           0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
#           0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
#           0, 1, 0, 0, 0, 0, 0, 0, 0, 1]),
#   tensor(2937),
#   tensor([72, 94, 221, 306]),
#   tensor([69, 110, 107, 112, 81, 135, 70, 151, 108, 153])))

all_all_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=178x218>,
#  (tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
#           1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
#           1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
#           0, 0, 0, 1, 0, 0, 0, 0, 0, 1]),
#  tensor(8692),
#  tensor([216, 59, 91, 126]),
#  tensor([76, 112, 104, 106, 108, 128, 74, 156, 98, 158])))

import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.patches import Circle

def show_images(data, main_title=None):
    if "attr" in data.target_type and len(data.target_type) == 1 \
        or not data.target_type:
        plt.figure(figsize=(12, 6))
        plt.suptitle(t=main_title, y=1.0, fontsize=14)
        for i, (im, _) in enumerate(data, start=1):
            plt.subplot(2, 5, i)
            plt.imshow(X=im)
            if i == 10:
                break
        plt.tight_layout(h_pad=3.0)
        plt.show()
    elif "identity" in data.target_type and len(data.target_type) == 1:
        plt.figure(figsize=(12, 6))
        plt.suptitle(t=main_title, y=1.0, fontsize=14)
        for i, (im, lab) in enumerate(data, start=1):
            plt.subplot(2, 5, i)
            plt.title(label=lab.item())
            plt.imshow(X=im)
            if i == 10:
                break
        plt.tight_layout(h_pad=3.0)
        plt.show()
    elif "bbox" in data.target_type and len(data.target_type) == 1:
        fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(12, 6))
        fig.suptitle(t=main_title, y=1.0, fontsize=14)
        for (i, (im, (x, y, w, h))), axis \
            in zip(enumerate(data, start=1), axes.ravel()):
            axis.imshow(X=im)
            rect = Rectangle(xy=(x, y), width=w, height=h,
                             linewidth=3, edgecolor='r',
                             facecolor='none')
            axis.add_patch(p=rect)
            if i == 10:
                break
        fig.tight_layout(h_pad=3.0)
        plt.show()
    elif "landmarks" in data.target_type and len(data.target_type) == 1:
        plt.figure(figsize=(12, 6))
        plt.suptitle(t=main_title, y=1.0, fontsize=14)
        for i, (im, lm) in enumerate(data, start=1):
            px = []
            py = []
            for j, v in enumerate(lm):
                if j%2 == 0:
                    px.append(v)
                else:
                    py.append(v)
            plt.subplot(2, 5, i)
            plt.imshow(X=im)
            plt.scatter(x=px, y=py)
            if i == 10:
                break
        plt.tight_layout(h_pad=3.0)
        plt.show()
    elif len(data.target_type) == 4:
        fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(12, 6))
        fig.suptitle(t=main_title, y=1.0, fontsize=14)
        for (i, (im, (_, lab, (x, y, w, h), lm))), axis \
            in zip(enumerate(data, start=1), axes.ravel()):
            axis.set_title(label=lab.item())
            axis.imshow(X=im)
            rect = Rectangle(xy=(x, y), width=w, height=h,
                             linewidth=3, edgecolor='r',
                             facecolor='none', clip_on=True)
            axis.add_patch(p=rect)
            for j, (px, py) in enumerate(lm.split(2)):
                axis.add_patch(p=Circle(xy=(px, py)))
            # for j, v in enumerate(lm):
            #     if j%2 == 0:
            #         px.append(v)
            #     else:
            #         py.append(v)
            # axis.scatter(x=px, y=py)
            # axis.plot(px, py)
# `axis.scatter()` and `axis.plot()` of `plt.subplots()` don't work
# properly. They shrink images so use `axis.add_patch()` instead.
            if i == 10:
                break
        fig.tight_layout(h_pad=3.0)
        plt.show()

show_images(data=train_attr_data, main_title="train_attr_data")
show_images(data=valid_identity_data, main_title="valid_identity_data")
show_images(data=test_bbox_data, main_title="test_bbox_data")
show_images(data=all_landmarks_data, main_title="all_landmarks_data")
show_images(data=all_empty_data, main_title="all_empty_data")
show_images(data=all_all_data, main_title="all_all_data")

CelebA in PyTorch

CelebA in PyTorch

CelebA in PyTorch

CelebA in PyTorch

CelebA in PyTorch

CelebA in PyTorch

The above is the detailed content of CelebA is PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn