Home >Backend Development >Python Tutorial >How Do I Melt and Unmelt Pandas DataFrames for Data Manipulation?

How Do I Melt and Unmelt Pandas DataFrames for Data Manipulation?

Susan Sarandon
Susan SarandonOriginal
2024-12-25 21:19:14210browse

How Do I Melt and Unmelt Pandas DataFrames for Data Manipulation?

How Do I Melt a Pandas DataFrame?

Problem Statement:

Melting a Pandas DataFrame involves transposing data from a wide format to a long format. This is useful when manipulating data for analysis, visualization, or other purposes. Let's delve into various melting scenarios with sample problems and their corresponding solutions:

Problem 1: Transposing to Long Format

Question: How do I melt a DataFrame so that the following format is achieved?

    Name  Age  Subject Grade
0    Bob   13  English     C
1   John   16  English     B
2    Foo   16  English     B
3    Bar   15  English    A+
4   Alex   17  English     F
5    Tom   12  English     A
6    Bob   13     Math    A+
7   John   16     Math     B
8    Foo   16     Math     A
9    Bar   15     Math     F
10  Alex   17     Math     D
11   Tom   12     Math     C

Solution:

To melt the DataFrame, use df.melt(). Specify the id_vars (columns to remain in the original form) and var_name and value_name for the new column names:

pd.melt(df, id_vars=['Name', 'Age'], var_name='Subject', value_name='Grade')

Problem 2: Filtering Columns During Melting

Question: How do I melt the DataFrame from Problem 1 and filter out the 'English' column?

Solution:

Use value_vars in df.melt() to specify which columns to melt. In this case, only ['Math'] is selected:

pd.melt(df, id_vars=['Name', 'Age'], value_vars='Math', var_name='Subject', value_name='Grade')

Problem 3: Ordering and Grouping Melted Data

Question: How do I sort the melted data from Problem 1 by score and group the students by name?

Solution:

Use .groupby() and .agg() on the melted DataFrame to group by 'Grade' and concatenate the names and subjects into comma-separated strings:

melted_df.groupby('Grade', as_index=False).agg(", ".join)

Problem 4: Unmelting a Melted DataFrame

Question: How do I unmelt a DataFrame that has been melted?

Solution:

Use DataFrame.pivot_table() to unmelt the DataFrame. Specify the values, index, and columns.

melted_df.pivot_table('Grades', ['Name', 'Age'], 'Subject', aggfunc='first').reset_index().droplevel(level=0, axis=1)

Problem 5: Grouping by Name and Separating Columns

Question: How do I group the DataFrame by name and separate the subjects and grades by comma?

Solution:

Melt the DataFrame and use .groupby() and .agg() to concatenate the subjects and grades:

pd.melt(df, id_vars=['Name'], var_name='Subject', value_name='Grade').groupby('Name', as_index=False).agg(", ".join)

Problem 6: Melting All Columns as Values

Question: How do I melt all columns in a DataFrame?

Solution:

Use df.stack().reset_index() to transpose the DataFrame:

pd.melt(df, id_vars=None, var_name='Column', value_name='Value')

These solutions demonstrate the versatility of melting and unmelting pandas DataFrames to manipulate data for various purposes.

The above is the detailed content of How Do I Melt and Unmelt Pandas DataFrames for Data Manipulation?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn