Home >Backend Development >Python Tutorial >How to Melt and Unmelt Pandas DataFrames: A Comprehensive Guide?
How do I melt a pandas dataframe?
Melting a dataframe involves transposing the data from a wide format to a long format, where multiple columns are merged and become one.
How do I use melt?
To use melt on a dataframe, you can use the pd.melt() function. This function takes the following arguments:
When do I use melt?
Melting a dataframe is useful when you want to:
How can I solve specific melt-related problems?
Problem 1: Transposing a dataframe
To transpose a dataframe (e.g., converting columns into rows), use the following code:
df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades')
Problem 2: Selecting specific columns for melting
To melt only specific columns, use the value_vars argument, like this:
df.melt(id_vars=['Name', 'Age'], value_vars=['Math'], var_name='Subject', value_name='Grades')
Problem 3: Grouping and ordering melted data
To group and order melted data, you can use groupby() and sort_values() functions:
df.melt(id_vars=['Name', 'Age']) \ .groupby('Grades') \ .agg(', '.join) \ .sort_values('Grades')
Problem 4: Unmelting a melted dataframe
To convert a melted dataframe back to its original format, use the pivot_table() function:
df.pivot_table("Grades", ['Name', 'Age'], 'Subject', aggfunc='first')
Problem 5: Grouping by names and separating subjects and grades
To group by names and separate subjects and grades, merge the columns using melt() and then use groupby():
df.melt(id_vars=['Name', 'Age']) \ .groupby('Name') \ .agg(', '.join)
Problem 6: Melting the entire dataframe
To melt the entire dataframe, omit the value_vars argument:
df.melt(var_name='Column', value_name='Value')
The above is the detailed content of How to Melt and Unmelt Pandas DataFrames: A Comprehensive Guide?. For more information, please follow other related articles on the PHP Chinese website!