


Sending a sequence of commands and waiting for a response
In your scenario, a thread is responding to a blocking read/write method, waiting until it detects a keyword or times out using waitForKeyword(). Unfortunately, when readLines() is utilized to test the app, only a small portion of the file is obtained. Additionally, readLines immediately returns false during the second iteration without waiting for timeout.
Understanding the problem
The issue stems from the design of readLines(), which reads all available data and separates it into lines. When a sequence of commands is being processed, readLines() reads only the first part of the file because it doesn't detect the keyword. Subsequently, when it's called again, readLines() returns false as it has already iterated over the entire available data.
Achieving a reliable approach
To effectively send a sequence of commands and wait for their responses, consider utilizing a state machine approach. This provides a structured and reliable method for managing the flow of commands and responses, ensuring that the expected response is received before proceeding.
Example implementation
The following snippet demonstrates a state machine implementation using Qt's QStateMachine and related classes:
class Programmer : public StatefulObject { Q_OBJECT AppPipe m_port { nullptr, QIODevice::ReadWrite, this }; State s_boot { &m_mach, "s_boot" }, s_send { &m_mach, "s_send" }; FinalState s_ok { &m_mach, "s_ok" }, s_failed { &m_mach, "s_failed" }; public: Programmer(QObject * parent = 0) : StatefulObject(parent) { connectSignals(); m_mach.setInitialState(&s_boot); send (&s_boot, &m_port, "boot\n"); expect(&s_boot, &m_port, "boot successful", &s_send, 1000, &s_failed); send (&s_send, &m_port, ":HULLOTHERE\n:00000001FF\n"); expect(&s_send, &m_port, "load successful", &s_ok, 1000, &s_failed); } AppPipe & pipe() { return m_port; } };
In this example, Programmer encapsulates the state machine and provides an interface to communicate with the device. State transitions are defined using the send() and expect() functions to handle sending commands and waiting for expected responses, respectively.
Advantages of this approach
Using a state machine has several advantages:
- Structured flow control: The state machine ensures a well-defined sequence of commands and responses, preventing out-of-order communication.
- Timeout handling: Timeouts can be specified for each expected response, ensuring that the system doesn't hang indefinitely.
- Error handling: Final error states can be defined to capture communication failures, enabling appropriate error handling.
- Asynchronous nature: The state machine can be executed concurrently with the main application, eliminating blocking issues.
The above is the detailed content of How Can a State Machine Solve the Problem of Incomplete Data Retrieval When Sending a Sequence of Commands and Waiting for Responses?. For more information, please follow other related articles on the PHP Chinese website!

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.