


Concatenating Multiple CSV Files into a Single DataFrame
Problem Statement
To efficiently combine multiple CSV files into a unified DataFrame, a concise and reliable solution is sought. However, a hurdle has been encountered within the concatenation loop.
Solution
To resolve the issue and successfully concatenate the CSV files, the following comprehensive code snippet can be employed:
import os import pandas as pd from pathlib import Path path = r'C:\DRO\DCL_rawdata_files' all_files = Path(path).glob('*.csv') df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
This code utilizes a generator expression to read each CSV file individually, and then concatenates them into a single DataFrame. The ignore_index parameter ensures that the concatenated DataFrame has continuous row indices.
Adding Information to Identify Data Provenance
In certain scenarios, it may be beneficial to add a column to the concatenated DataFrame indicating the source file of each row. This can be achieved using one of the following approaches:
Option 1: Add Filename as a New Column
dfs = [] for f in all_files: data = pd.read_csv(f) data['file'] = f.stem dfs.append(data) df = pd.concat(dfs, ignore_index=True)
Option 2: Add Generic File Source as a New Column
dfs = [] for i, f in enumerate(all_files): data = pd.read_csv(f) data['file'] = f'File {i}' dfs.append(data) df = pd.concat(dfs, ignore_index=True)
Option 3: Add File Source Using List Comprehension
dfs = [pd.read_csv(f) for f in all_files] df = pd.concat(dfs, ignore_index=True) df['Source'] = np.repeat([f'S{i}' for i in range(len(dfs))], [len(df) for df in dfs])
Option 4: Single-Line Solution with .assign()
df = pd.concat((pd.read_csv(f).assign(filename=f.stem) for f in all_files), ignore_index=True)
By implementing one of these options, the concatenated DataFrame will be annotated with information to trace the origin of each row.
The above is the detailed content of How Can I Efficiently Concatenate Multiple CSV Files into a Single Pandas DataFrame and Track Data Provenance?. For more information, please follow other related articles on the PHP Chinese website!

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

Arraysaresignificantlyfasterthanlistsforoperationsbenefitingfromdirectmemoryaccessandfixed-sizestructures.1)Accessingelements:Arraysprovideconstant-timeaccessduetocontiguousmemorystorage.2)Iteration:Arraysleveragecachelocalityforfasteriteration.3)Mem

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver CS6
Visual web development tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)
