Home >Backend Development >Python Tutorial >How to Create a Scatter Plot with Categorical Data in Python\'s Matplotlib?

How to Create a Scatter Plot with Categorical Data in Python\'s Matplotlib?

DDD
DDDOriginal
2024-12-20 10:46:11262browse

How to Create a Scatter Plot with Categorical Data in Python's Matplotlib?

How to Create a Scatter Plot by Category

In Python's Matplotlib, creating a scatter plot by category can be achieved using the plot method, as demonstrated below:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))

# Group Data
groups = df.groupby('label')

# Plot
fig, ax = plt.subplots()
ax.margins(0.05)  # Optional padding
for name, group in groups:
    ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)
ax.legend()

plt.show()

For a more customized appearance resembling Pandas' default style:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# Generate Data
num = 20
x, y = np.random.random((2, num))
labels = np.random.choice(['a', 'b', 'c'], num)
df = pd.DataFrame(dict(x=x, y=y, label=labels))

# Group Data
groups = df.groupby('label')

# Plot
plt.rcParams.update(pd.tools.plotting.mpl_stylesheet)
colors = pd.tools.plotting._get_standard_colors(len(groups), color_type='random')

fig, ax = plt.subplots()
ax.set_color_cycle(colors)
ax.margins(0.05)
for name, group in groups:
    ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)
ax.legend(numpoints=1, loc='upper left')

plt.show()

The above is the detailed content of How to Create a Scatter Plot with Categorical Data in Python\'s Matplotlib?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn