


Why is Concatenating Many Pandas DataFrames Exponentially Slow, and How Can I Avoid It?
Exponentially Slow Concatenation of DataFrames
When working with large datasets, it's common to partition the data into smaller chunks for efficient processing. However, concatenating these chunks back together can become exponentially slower as the number of chunks increases.
Cause of Slowdown
The slowdown is attributed to how pd.concat() is implemented. When called within a loop, it creates a new DataFrame for each concatenation, resulting in substantial data copying. This copying cost grows quadratically with the number of iterations, leading to the observed exponential increase in processing time.
Avoiding the Slowdown
To circumvent this performance bottleneck, it's crucial to avoid calling pd.concat() inside a for-loop. Instead, store the chunks in a list and concatenate them all at once after processing:
super_x = [] for i, df_chunk in enumerate(df_list): [x, y] = preprocess_data(df_chunk) super_x.append(x) super_x = pd.concat(super_x, axis=0)
Using this approach, the copying only occurs once, significantly reducing the overall processing time.
The above is the detailed content of Why is Concatenating Many Pandas DataFrames Exponentially Slow, and How Can I Avoid It?. For more information, please follow other related articles on the PHP Chinese website!

Create multi-dimensional arrays with NumPy can be achieved through the following steps: 1) Use the numpy.array() function to create an array, such as np.array([[1,2,3],[4,5,6]]) to create a 2D array; 2) Use np.zeros(), np.ones(), np.random.random() and other functions to create an array filled with specific values; 3) Understand the shape and size properties of the array to ensure that the length of the sub-array is consistent and avoid errors; 4) Use the np.reshape() function to change the shape of the array; 5) Pay attention to memory usage to ensure that the code is clear and efficient.

Article discusses impossibility of tuple comprehension in Python due to syntax ambiguity. Alternatives like using tuple() with generator expressions are suggested for creating tuples efficiently.(159 characters)

The article explains modules and packages in Python, their differences, and usage. Modules are single files, while packages are directories with an __init__.py file, organizing related modules hierarchically.

Article discusses docstrings in Python, their usage, and benefits. Main issue: importance of docstrings for code documentation and accessibility.

Article discusses lambda functions, their differences from regular functions, and their utility in programming scenarios. Not all languages support them.

Article discusses break, continue, and pass in Python, explaining their roles in controlling loop execution and program flow.

The article discusses the 'pass' statement in Python, a null operation used as a placeholder in code structures like functions and classes, allowing for future implementation without syntax errors.

Article discusses passing functions as arguments in Python, highlighting benefits like modularity and use cases such as sorting and decorators.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
