Home >Backend Development >Python Tutorial >How Can I Split a Pandas DataFrame into Multiple DataFrames Based on Column Values Using Groupby?
Splitting a Pandas DataFrame Based on Column Values Using Groupby
Pandas offers the powerful groupby function to manipulate data based on common values in a specified column. One practical application of this function is splitting a DataFrame into multiple smaller DataFrames based on unique values in a column.
Consider the DataFrame df below:
df = N0_YLDF ZZ MAT 0 6.286333 2 11.669069 1 6.317000 6 11.669069 2 6.324889 6 11.516454 3 6.320667 5 11.516454 4 6.325556 5 11.516454 5 6.359000 6 11.516454 6 6.359000 6 11.516454 7 6.361111 7 11.516454 8 6.360778 7 11.516454 9 6.361111 6 11.516454
To split this DataFrame into four DataFrames based on the unique values of column ZZ, follow these steps:
Group the DataFrame by column ZZ:
gb = df.groupby('ZZ')
Obtain a list of grouped objects:
grouped_objects = [gb.get_group(x) for x in gb.groups]
The result will be a list of four DataFrames, each representing a different group based on the unique values in column ZZ.
The above is the detailed content of How Can I Split a Pandas DataFrame into Multiple DataFrames Based on Column Values Using Groupby?. For more information, please follow other related articles on the PHP Chinese website!