Home >Backend Development >C++ >How can I optimize my Number Theoretic Transform (NTT) and modular arithmetic for faster computation, especially with very large numbers (e.g., over 12000 bits)?
I wanted to use NTT for fast squaring (see Fast bignum square computation), but the result is slow even for really big numbers .. more than 12000 bits.
So my question is:
This is my (already optimized) source code in C for NTT (it's complete and 100% working in C whitout any need for third-party libs and should also be thread-safe. Beware the source array is used as a temporary!!!, Also it cannot transform the array to itself).
Here's an example of an optimized NTT implementation in C using precomputed powers and bitwise operations:
class NTT { public: NTT() { // Initialize constants p = 0xc0000001; W = modpow(2, 0x30000000 / n); iW = modpow(2, p - 1 - 0x30000000 / n); rN = modpow(n, p - 2); NN = n >> 1; // Precompute W and iW powers WW = new uint32_t[n]; iWW = new uint32_t[n]; WW[0] = 1; iWW[0] = 1; for (uint32_t i = 1; i < n; i++) { WW[i] = modmul(WW[i - 1], W); iWW[i] = modmul(iWW[i - 1], iW); } } void NTT(uint32_t *dst, uint32_t *src, uint32_t n) { if (n > 0) { // Reorder even, odd elements for (uint32_t i = 0, j = 0; i < NN; i++, j += 2) { dst[i] = src[j]; } for (j = 1; i < n; i++, j += 2) { dst[i] = src[j]; } // Recursive NTT NTT(src, dst, NN); // Even NTT(src + NN, dst + NN, NN); // Odd // Restore results for (uint32_t i = 0, j = NN; i < NN; i++, j++) { uint32_t a0 = src[i]; uint32_t a1 = modmul(src[j], WW[i]); dst[i] = modadd(a0, a1); dst[j] = modsub(a0, a1); } } } private: uint32_t p, n, NN, W, iW, rN; uint32_t *WW, *iWW; // Modular arithmetic operations inline uint32_t modadd(uint32_t a, uint32_t b) { uint32_t d = a + b; if (d >= p) d -= p; return d; } inline uint32_t modsub(uint32_t a, uint32_t b) { uint32_t d = a - b; if (d > a) d += p; return d; } inline uint32_t modmul(uint32_t a, uint32_t b) { uint32_t m = (uint64_t)a * b; return m - (p * (m / p)); } inline uint32_t modpow(uint32_t a, uint32_t b) { if (b == 0) return 1; uint32_t t = modpow(a, b / 2); t = modmul(t, t); if (b & 1) t = modmul(t, a); return t; } };
The above is the detailed content of How can I optimize my Number Theoretic Transform (NTT) and modular arithmetic for faster computation, especially with very large numbers (e.g., over 12000 bits)?. For more information, please follow other related articles on the PHP Chinese website!