Home >Backend Development >Python Tutorial >How to Efficiently Convert a Pandas DataFrame to a NumPy Array?
To transform a pandas dataframe into a NumPy array, it is recommended to use the df.to_numpy() method. This approach is preferable to df.values for several reasons, as detailed below.
Calling the df.to_numpy() method allows for the extraction of the underlying NumPy array from the dataframe.
import numpy as np import pandas as pd index = [1, 2, 3, 4, 5, 6, 7] a = [np.nan, np.nan, np.nan, 0.1, 0.1, 0.1, 0.1] b = [0.2, np.nan, 0.2, 0.2, 0.2, np.nan, np.nan] c = [np.nan, 0.5, 0.5, np.nan, 0.5, 0.5, np.nan] df = pd.DataFrame({'A': a, 'B': b, 'C': c}, index=index) df = df.rename_axis('ID') arr = df.to_numpy() print(arr)
Output:
[[ nan 0.2 nan] [ nan nan 0.5] [ nan 0.2 0.5] [ 0.1 0.2 nan] [ 0.1 0.2 0.5] [ 0.1 nan 0.5] [ 0.1 nan nan]]
If the aim is to maintain the data types in the resulting NumPy array, a possible approach involves utilizing DataFrame.to_records(), as shown below:
records_array = df.to_records() print(records_array)
Output:
rec.array([('a', 1, 4, 7), ('b', 2, 5, 8), ('c', 3, 6, 9)], dtype=[('ID', '<U1'), ('A', '<i8'), ('B', '<i8'), ('C', '<i8')])
As an alternative, one can employ np.rec.fromrecords:
v = df.reset_index() records_array = np.rec.fromrecords(v, names=v.columns.tolist()) print(records_array)
Output:
rec.array([('a', 1, 4, 7), ('b', 2, 5, 8), ('c', 3, 6, 9)], dtype=[('index', '<U1'), ('A', '<i8'), ('B', '<i8'), ('C', '<i8')])
Using either of these methods ensures the preservation of data types in the NumPy array.
The above is the detailed content of How to Efficiently Convert a Pandas DataFrame to a NumPy Array?. For more information, please follow other related articles on the PHP Chinese website!