


Why Do I Get an 'Undefined Reference to' Error with Template Class Constructors in C ?
"Undefined Reference to" Template Class Constructor
In C programming, template classes are often used to provide generic functionality that can be instantiated with different types. However, sometimes when instantiating a template class, you may encounter an "undefined reference to" error.
This error occurs when the compiler cannot find the implementation for the constructor of the template class. The compiler typically needs to see the implementation of the constructor in order to generate the code for the instantiated class.
Issue
In the provided code, the template class cola is defined in cola.h header file, but the implementation is in the cola.cpp file. When compiling the program, the compiler sees the template declaration in main.cpp and attempts to implicitly instantiate the cola class with float and string types.
However, since the compiler has not yet seen the implementation of the constructor in cola.cpp, it cannot generate the code for these instantiated classes, resulting in the "undefined reference to" error.
Solution
There are two approaches to resolve this issue:
Approach 1: Explicit Template Instantiation
Add explicit template instantiations at the end of the cola.cpp file:
template class cola<float>; template class cola<string>;</string></float>
This explicitly instructs the compiler to generate code for the cola template class with the specified types.
Approach 2: Move Implementation to Header Files
Move the implementation of the template class constructor and member functions into the header file (cola.h and nodo_colaypila.h).
This ensures that the compiler sees the implementation when it instantiates the template class, eliminating the need for explicit instantiation.
Header File vs Translation Unit
In Approach 1, explicit instantiation is done at the end of the translation unit (a single compiled file). This means that all code in that file must be compiled before the instantiation.
In Approach 2, the implementation is in the header file, which is included in every translation unit that uses the template class. As a result, the implementation is available to the compiler regardless of the order of compilation.
Conclusion
Both approaches are valid solutions to the "undefined reference to" error with template classes. The choice depends on the specific needs of the project. Explicit instantiation is more flexible and allows for better control over which template specializations are generated. However, moving the implementation to header files is more common and provides more flexibility in using the template class.
The above is the detailed content of Why Do I Get an 'Undefined Reference to' Error with Template Class Constructors in C ?. For more information, please follow other related articles on the PHP Chinese website!

There are four commonly used XML libraries in C: TinyXML-2, PugiXML, Xerces-C, and RapidXML. 1.TinyXML-2 is suitable for environments with limited resources, lightweight but limited functions. 2. PugiXML is fast and supports XPath query, suitable for complex XML structures. 3.Xerces-C is powerful, supports DOM and SAX resolution, and is suitable for complex processing. 4. RapidXML focuses on performance and parses extremely fast, but does not support XPath queries.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

The main differences between C# and C are syntax, performance and application scenarios. 1) The C# syntax is more concise, supports garbage collection, and is suitable for .NET framework development. 2) C has higher performance and requires manual memory management, which is often used in system programming and game development.

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

There are significant differences in how C# and C implement and features in object-oriented programming (OOP). 1) The class definition and syntax of C# are more concise and support advanced features such as LINQ. 2) C provides finer granular control, suitable for system programming and high performance needs. Both have their own advantages, and the choice should be based on the specific application scenario.

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.