search
HomeWeb Front-endJS TutorialAttacking the Furthest Enemy in Range (Tower Defence)

In the previous article, I demonstrated how to efficiently track the furthest enemy using a max heap. In this article, we’ll see how to integrate that into a game mechanic.

Event-Driven Approach

The existing implementation uses an event-driven architecture. For this article, we will focus on the Enemy events. Those events will trigger spin-off actions.

Each enemy can experience various events. Below is an example of a life cycle that the enemy may go through:

Attacking the Furthest Enemy in Range (Tower Defence)

For the article, I am interested in the two events:

  • enemyMoved: Fired when an enemy's position changes.
  • enemyRemoved*: Fired when an enemy is removed from the game (e.g. defeated).

(* I plan to adjust event names in the future since an enemy can be removed for different reasons.)

Plan

I created an Event Model diagram to visualise how different events interact. This helps with understanding how things connect.

Attacking the Furthest Enemy in Range (Tower Defence)

For every event, I have a command that triggers it. (So, an event is the outcome of a command.) In some cases, as a result of an event, we will need to update data (green sticky notes depict this). A combination of all three together is a vertical slice.

My focus will be on the green sticky note "Enemies within tower's range".

Implementation

The goal is for us to update available enemies whenever an enemy is within the tower's range and remove them if not.

We will be working with a tower class. In this class, we have a variable to store enemies.

export class Tower implements ITower {
    public enemies = new MaxHeap()

    constructor(id: number, coords: Coordinate) {
        this.id = id
        this.coords = coords

        // listeners will go here...
    }

Placing event listeners in the Tower class centralises the logic, reducing the need to maintain mappings between towers and enemies. While this adds some complexity to the class, it ensures better encapsulation and simplifies debugging, which is an easier direction to take for now.

Action: Adding Enemies Within Range

Test: Adding an Enemy

First, we’ll write a test to verify that an enemy within range is added to the tower's enemies heap:

it('should add an enemy to the tower when enemy is within range', () => {
    const tower = new Tower(1, { col: 0, row: 1 });
    const enemy = new TinyEnemy();
    enemy.currentPosition = { col: 0, row: 1 };

    triggerEnemyMovedEvent(enemy);

    expect(tower.enemies.length()).toBe(1);
});

Implementation: Adding an Enemy

Here’s the corresponding implementation:

window.addEventListener("enemyMoved", event => {
    const enemy: Enemy = event.detail.enemy;

    if (enemyWithinRange(this, enemy)) {
        this.enemies.insertOrUpdate(enemy.id, enemy.distanceTraveled);
    }
});

Whenever enemyMoved is triggered, we will check if an enemy should be added to the heap. I already have enemyWithinRange function, it's a matter of adding insertOrUpdate call.


Action: Prevent Adding Out-of-Range Enemies

Test: Ignoring Enemies Out of Range

Next, we ensure that enemies outside the tower's range are not added:

export class Tower implements ITower {
    public enemies = new MaxHeap()

    constructor(id: number, coords: Coordinate) {
        this.id = id
        this.coords = coords

        // listeners will go here...
    }

Implementation: Ignoring Enemies Out of Range

This scenario is already covered by our earlier check using enemyWithinRange, so no additional code is required.


Action: Removing Enemies Out of Range

Test: Removing an Out-of-Range Enemy

Now we test that enemies leaving the range are removed from the tower's visibility:

it('should add an enemy to the tower when enemy is within range', () => {
    const tower = new Tower(1, { col: 0, row: 1 });
    const enemy = new TinyEnemy();
    enemy.currentPosition = { col: 0, row: 1 };

    triggerEnemyMovedEvent(enemy);

    expect(tower.enemies.length()).toBe(1);
});

Implementation: Removing an Out-of-Range Enemy

window.addEventListener("enemyMoved", event => {
    const enemy: Enemy = event.detail.enemy;

    if (enemyWithinRange(this, enemy)) {
        this.enemies.insertOrUpdate(enemy.id, enemy.distanceTraveled);
    }
});

If the enemy used to be within the range then we can remove it.


Action: Removing an Enemy from the Game

Test: Handling enemyRemoved Event

Lastly, we ensure that enemies removed from the game are also removed from the tower's heap:

it('should not add an enemy to the tower if enemy is out of range', () => {
    const tower = new Tower(1, { col: 0, row: 1 });
    const enemy = new TinyEnemy();
    enemy.currentPosition = { col: 0, row: 99 };

    triggerEnemyMovedEvent(enemy);

    expect(tower.enemies.length()).toBe(0);
});

Implementation: Handling enemyRemoved

it('should remove an enemy from the tower when it moves out of range', () => {
    const tower = new Tower(1, { col: 0, row: 1 });
    const enemy = new TinyEnemy();
    enemy.currentPosition = { col: 0, row: 1 };

    // enemy within range
    triggerEnemyMovedEvent(enemy);
    expect(tower.enemies.length()).toBe(1);

    // enemy outside of the range
    enemy.currentPosition = { col: 0, row: 99 };
    triggerEnemyMovedEvent(enemy);

    expect(tower.enemies.length()).toBe(0);
});

Whenever an event is triggered, if the enemy is within the range then we can remove them.

Conclusion

By combining an event-driven approach with a max heap, we achieved an efficient way for towers to prioritise enemies dynamically. The implementation ties seamlessly into the game's event system, ensuring real-time updates and responsiveness.

Additionally, when it comes to testing, using an event-driven approach removes the need to tie internal code to test. Hence making tests less brittle. We can refactor code behind behaviour in whatever way we want, and as long as events/listeners are set up correctly, tests should still pass.

This implementation can now pave the way to:

  • Adding attack functionality (now that we know who to attack)
  • Swapping how data for enemies is stored

Feel free to adapt this approach for your own tower defence games.

The above is the detailed content of Attacking the Furthest Enemy in Range (Tower Defence). For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

Node.js Streams with TypeScriptNode.js Streams with TypeScriptApr 30, 2025 am 08:22 AM

Node.js excels at efficient I/O, largely thanks to streams. Streams process data incrementally, avoiding memory overload—ideal for large files, network tasks, and real-time applications. Combining streams with TypeScript's type safety creates a powe

Python vs. JavaScript: Performance and Efficiency ConsiderationsPython vs. JavaScript: Performance and Efficiency ConsiderationsApr 30, 2025 am 12:08 AM

The differences in performance and efficiency between Python and JavaScript are mainly reflected in: 1) As an interpreted language, Python runs slowly but has high development efficiency and is suitable for rapid prototype development; 2) JavaScript is limited to single thread in the browser, but multi-threading and asynchronous I/O can be used to improve performance in Node.js, and both have advantages in actual projects.

The Origins of JavaScript: Exploring Its Implementation LanguageThe Origins of JavaScript: Exploring Its Implementation LanguageApr 29, 2025 am 12:51 AM

JavaScript originated in 1995 and was created by Brandon Ike, and realized the language into C. 1.C language provides high performance and system-level programming capabilities for JavaScript. 2. JavaScript's memory management and performance optimization rely on C language. 3. The cross-platform feature of C language helps JavaScript run efficiently on different operating systems.

Behind the Scenes: What Language Powers JavaScript?Behind the Scenes: What Language Powers JavaScript?Apr 28, 2025 am 12:01 AM

JavaScript runs in browsers and Node.js environments and relies on the JavaScript engine to parse and execute code. 1) Generate abstract syntax tree (AST) in the parsing stage; 2) convert AST into bytecode or machine code in the compilation stage; 3) execute the compiled code in the execution stage.

The Future of Python and JavaScript: Trends and PredictionsThe Future of Python and JavaScript: Trends and PredictionsApr 27, 2025 am 12:21 AM

The future trends of Python and JavaScript include: 1. Python will consolidate its position in the fields of scientific computing and AI, 2. JavaScript will promote the development of web technology, 3. Cross-platform development will become a hot topic, and 4. Performance optimization will be the focus. Both will continue to expand application scenarios in their respective fields and make more breakthroughs in performance.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.